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The Health Effects Institute, established
in 1980, is an independent and unbiased
source of information on the health
effects of motor vehicle emissions. HEI
supports research on all major pollutants,
including regulated pollutants (such as
carbon monoxide, ozone, nitrogen
dioxide, and particulate matter) and
unregulated pollutants (such as diesel
engine exhaust, methanol, and
aldehydes). To date, HEI has supported
more than 220 projects at institutions in
North America and Europe and has
published over 140 research reports.
Consistent with its mission to serve as an
independent source of information on the
health effects of motor vehicle pollutants,
the Institute also engages in special
review and evaluation activities.

Typically, HEI receives half its funds
from the US Environmental Protection
Agency and half from 28 manufacturers
and marketers of motor vehicles and
engines in the United States.
Occasionally, funds from other public and
private organizations either support
special projects or provide a portion of
the resources for an HEI study. Regardless
of funding sources, HEI exercises
complete autonomy in setting its research
priorities and in reaching its conclusions.
An independent Board of Directors
governs HEIL The Institute’s Health
Research and Review Committees serve
complementary scientific purposes and
draw distinguished scientists as
members. The results of HEI-funded
research and evaluations have been used
in public and private decision making.
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Revised Analyses of Time-Series Studies

of Air Pollution and Health

Over the past decade, time-series studies con-
ducted in many cities have contributed informa-
tion about the association between daily changes
in concentrations of airborne particulate matter
(PM) and daily morbidity and mortality. In 2002,
however, investigators at Johns Hopkins Univer-
sity and at Health Canada identified issues in the
statistical model used in the majority of time-
series studies. This HEI Special Report details
attempts to address several questions raised by
these discoveries. The first section addresses the
impact of the issues on the HEI-funded National
Morbidity, Mortality, and Air Pollution Study
(NMMAPS). The second section addresses the
impact on additional studies selected by the US
Environmental Protection Agency (EPA). Special
Panels of the Health Effects Institute contributed
Commentaries on the findings.

Analyses of the health effects of air pollution
must account for other time-varying factors (such
as weather and unmeasured risk factors) that may
affect health outcomes. Otherwise, the effects of
these factors could be counted as air pollution
effects. Although many methods can be used for
this purpose, generalized additive models (GAMs)
have been the favored method in recent years. In
May 2002, NMMAPS investigators at Johns Hop-
kins University discovered that part of the GAM
programming in the S-Plus statistical software,
which they and many others had used to fit GAMs
to time-series data, was not entirely appropriate
for this purpose. Specifically, the default conver-
gence criteria were not appropriate and the itera-
tive process required to obtain effect estimates was
not likely to converge. After discovering these
problems, the NMMAPS investigators quickly ini-
tiated alternative analyses of their data, including
use of GAMs with appropriate convergence cri-
teria, to see how the effect estimates might change.
At about the same time, investigators at Health
Canada found that, under certain conditions, pro-
gramming to calculate standard errors of the

regression coefficients in GAM software resulted
in underestimates of the standard errors.

Concurrently, results of NMMAPS and other
time-series studies were under review as part of
the periodic review of the National Ambient Air
Quality Standards (NAAQS) for PM. Thus under-
standing how these results might be changed by
new analyses became a priority. As the funding
sponsor for NMMAPS, HEI asked the NMMAPS
investigators to prepare reports presenting their
new analyses. Two NMMAPS reports were sub-
mitted to HEL: “Mortality Among Residents of 90
Cities” by Dominici and colleagues and “Mor-
bidity and Mortality Among Elderly Residents of
Cities with Daily PM Measurements” by Schwartz
and colleagues. A Special Panel of the HEI Health
Review Committee reviewed these reports.

In the summer of 2002, EPA identified addi-
tional key studies from the US, Canada, and
Europe that were cited in the draft of the Air
Quality Criteria for Particulate Matter and had
used GAM in their analyses. The EPA requested
that the investigators who had conducted those
studies also carry out and report revised analyses.
The agency asked that they (1) reanalyze the orig-
inal data using the same nonparametric approach
(GAMs) that was used originally, but with stricter
convergence criteria; and (2) examine the sensi-
tivity of the findings obtained with GAMs when
using parametric models. The latter would also
estimate more accurate standard errors.

EPA requested that HEI review the resulting
short communication reports of the revised anal-
yses and write a Commentary on the effect of dif-
ferent analytic approaches on the results. HEI
agreed to take on this effort. A Special Panel of the
HEI Health Review Committee, including mem-
bers of the NMMAPS Review Panel and two addi-
tional methodologists, was formed to review the
short communication reports. The Panel evaluated
and interpreted changes in the original results due
to the revised analyses but did not specifically
evaluate the original study designs and methods.

Continued

This Statement, prepared by the Health Effects Institute, summarizes results from revised analyses of data from NMMAPS II and from selected
time-series studies. The following Special Report contains sections on Revised Analyses of NMMAPS II and Revised Analyses of Selected Time-
Series Studies as well as HEI Commentaries on each of these efforts written by special panels of the Institute’s Health Review Committee.
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METHODS

NMMAPS Revised Analyses

Reports of the revised NMMAPS analyses
addressed both problems with the application of
GAMs (settings for convergence criteria and max-
imum iterations, and standard error estimation)
and left most other aspects of the analyses
unchanged. Specifically, Dominici, Schwartz, and
their colleagues carried out the following:

e Replaced GAM functions with those using
stricter convergence criteria. These analyses
were designed to correct the GAM conver-
gence problem while acknowledging that the
problem with standard error estimates was
not addressed.

*  Replaced GAMs with generalized linear mod-
els (GLMs) with natural cubic splines, using
approximately the same degrees of freedom as
were used in the original GAMs. These analy-
ses were aimed at correcting problems with
the standard errors and provided an alterna-
tive smoothing approach to GAMs.

Schwartz and colleagues used two additional
alternatives to GAM and GLM for controlling tem-
poral effects:

e Penalized splines with approximately the
same degrees of freedom as in the original
GAMs.

e Case-crossover matching. This approach was
used as an alternative to GAM and GLM that
might be conceptually more straightforward
than the regression approaches for controlling
temporal effects.

As in the original report, Dominici and colleagues
applied the same model to each of the 90 cities
included in the evaluation of daily mortality. The
same variables and smoothing functions were used
in each city to control for potential confounding,
while parameter estimates and fitted smooth func-
tions were allowed to vary from city to city.
Schwartz and colleagues conducted the original and
the revised analyses by fitting a city-specific model
to each of the 14 cities included in the analysis of
hospital admissions data and each of the 10 cities
included in the evaluation of mortality. Both groups

of investigators also reevaluated the effect of
including copollutants in analytic models.

As in the original report, NMMAPS investiga-
tors calculated city-specific and overall estimates
of mortality effects and investigated heterogeneity
among cities. They also tested the sensitivity of
the results to different degrees of control for
unmeasured confounders.

Other Studies

In the revised analyses conducted at the request
of EPA, the investigators sought to evaluate the sen-
sitivity of effect estimates to choice of convergence
criteria and maximum iterations in GAM and to use
of parametric models that allow calculation of more
accurate standard errors. EPA guidelines to authors
suggested fitting a parametric model to the data
with approximately the same degrees of freedom as
for the original nonparametric model. Because of
time limitations, investigators were encouraged to
submit results of additional sensitivity analyses for
publication elsewhere.

RESULTS

NMMAPS Revised Analyses

Overall, for the NMMAPS data, GAMs with
stricter convergence criteria and GLMs with natural
cubic splines resulted in lower estimates of effect
than those from the original analyses conducted
with GAM and default convergence criteria.

In individual cities, the revised effect estimates
for mortality typically decreased and standard
errors increased. Across the 90 cities, the revised
mean effect on mortality decreased substantially
from 0.41% (increase per 10 pg/m? increase in
PM, ( concentration at lag 1) to 0.27% when using
GAM with stricter criteria and to 0.21% when
using GLM with natural cubic splines: an overall
decrease of nearly 50%. Lags 0 and 2 had corre-
sponding decreases. Regional patterns of effect
estimates remained across the 88 cities within the
contiguous United States. Because the 90 city-spe-
cific estimates usually were smaller and generally
had larger standard errors with the new analyses,
tests for heterogeneity of effect across the cities
indicated that heterogeneity was even less likely
to be present than previously.

Continued
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The overall decreases in effect estimates for hos-
pitalizations for cardiovascular diseases and for
chronic obstructive pulmonary disease were
smaller (approximately 8% to 10%); a small but
clear association continued to be found. The effect
estimate on pneumonia hospitalizations was sub-
stantially reduced. As in the original studies,
revised results for PM;y morbidity and mortality
did not change substantially when copollutants
were included in the models.

Other Studies

Nineteen primary authors submitted 21 short
communication reports presenting results from
analyses originally reported in 37 published orig-
inal articles and reports. Differences between the
original and revised effect estimates varied sub-
stantially across and within studies. Overall,
GAMs with stricter convergence criteria and GLMs
with natural cubic splines yielded lower effect
estimates but largely continued to identify an asso-
ciation of PM with mortality and morbidity, in par-
ticular for cardiovascular and respiratory diseases.
A few investigators went beyond EPA’s guidance
and submitted additional sensitivity analyses. The
impact of these analyses also differed across
studies. No substantial impact was seen in some;
in others, alternative modeling of time and
weather factors resulted in substantial changes.

CONCLUSIONS

On the basis of their review, the Special Panels
reached the following conclusions.

Study-Specific Conclusions

e In general, the estimates of effect in NMMAPS
decreased substantially, but the qualitative
conclusions did not change.

e Formal tests in NMMAPS for heterogeneity of
PM effect across cities did not indicate hetero-
geneity. The Panel recognized, however, that
the power to assess the presence of heteroge-
neity was low because of the generally larger
city-specific standard errors. The possibility
of heterogeneity therefore remains.

The overall impact of the other revised analyses
included:

e While the number of studies showing an asso-
ciation of PM with mortality was slightly
smaller, the PM association persisted in the
majority of studies.

e In some of the large number of studies in
which the PM association persisted, the esti-
mates of PM effect were substantially smaller.

e In the few studies in which investigators per-
formed further sensitivity analyses, some
showed marked sensitivity of the PM effect
estimate to the degree of smoothing and/or the
specification of weather.

General Conclusions

e The impact of using more appropriate conver-
gence criteria on the estimates of PM effect in
the revised analyses varied greatly across the
studies. In some studies, stricter convergence
criteria had little impact, and in a few the
impact was substantial. In no study were con-
clusions based on the original analyses
changed in a meaningful way by the use of
stricter criteria. Explanations for this variabil-
ity considered by the Panel include the degree
of temporal smoothing used in the original
analyses, the number of smoothed terms in
the models, and the degree of nonlinear col-
linearity (concurvity) among the smoothed
terms. The relative importance of these and
other explanations remains unclear.

e In general, the original PM effect estimates
were more sensitive to the method used to
account for temporal effects than to the con-
vergence criteria used. Further, in the few
studies in which temporal effects were exten-
sively examined, some estimates of effect
were more sensitive to the degree of smooth-
ing of temporal effects than either the conver-
gence criteria or the method used to account
for temporal effects. In some studies the origi-
nal effect estimates were largely insensitive to
either the method or degree of smoothing. In
several studies, however, the changes were
substantial enough to result in meaningful
changes in the study conclusions. In those few
studies in which qualitative conclusions were

Continued
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changed as a result of the different approaches
to smoothing, the revised results indicated no
effect of PM.

e In most studies, parametric smoothing
approaches used to obtain correct standard
errors of PM effect estimates produced
slightly larger standard errors than did GAM.
The impact of these larger standard errors on
level of statistical significance of the PM effect
was minor.

e  Alternative approaches used to model tempo-
ral effects in the revised analyses addressed the
problems of obtaining incorrect effect estimates
and standard errors when using GAMs. At this
time, however, no approach can be strongly
preferred over another for use in this context.

e These revised analyses have renewed the
awareness of the uncertainties present in esti-
mates of short-term air pollution effects based
on time-series data. Neither the appropriate
degree of control for time, nor the appropriate
specification of the effects of weather, has
been determined for time-series analyses. In
the absence of adequate biological under-
standing of the time course of PM and weather
effects, and their interactions, the Panel rec-
ommends exploration of the sensitivity of
future time-series studies to a wider range of
alternative degrees of smoothing and to alter-
native specifications of weather variables.

Impact

Air Pollution Time-Series Studies Compared

with randomized experimental studies in which
the investigator controls the intervention, findings
from observational studies (such as time series) are
always susceptible to uncontrolled biases and must
therefore be interpreted cautiously. Observational
air pollution and health studies are no exception.
Uncovering inappropriate default convergence cri-
teria in the GAM function again highlights the
potential for confounding in air pollution time-
series studies. As in many observational studies,
avoiding confounding bias typically requires iden-
tification and specification of appropriate measures
of the confounding factors as terms in a regression
analysis. Determining the appropriate degree of
smoothing time in air pollution time-series studies

has become a central issue. Overly aggressive
smoothing may allow residual confounding,
whereas inadequate smoothing may allow some or
all of the air pollution effect to be incorporated
into the smooth term. The best method for
selecting the appropriate degree of smoothing
needed to control any confounding bias remains to
be determined. Furthermore, as presented in the
discussion of approaches to handling time, there is
no gold standard for determining the appropriate
degree for smoothing. The uncertainty that these
issues introduce into time-series studies has moti-
vated ongoing work to gain much needed insight.
At this time, demonstration of sensitivity, or lack
of it, to a range of sensible smoothing choices
seems a reasonable approach.

Statistical Software The problem with applying
GAMs has sent a cautionary note to investigators
using statistical software. Clearly, the S-Plus GAM
function underestimated standard errors in air pol-
lution time-series studies, and until recently, the
default convergence criteria were likely to lead to
incorrect effect estimates. To their credit, investiga-
tors at Johns Hopkins continued to test their models
and as a result brought the issue of default conver-
gence criteria to light.

The nearly ubiquitous use of GAMs in time-
series studies reflects one of the hazards of taking a
standardized approach to analysis without veri-
fying the detailed functioning of a given software.
Clearly, as in this case, widespread use by applied
biostatisticians and epidemiologists does not guar-
antee that a software or algorithm has no draw-
backs. Looking ahead, analysts need to ensure that
statistical software is appropriate for a given appli-
cation. Again, the use of sensitivity analyses is
included among these cautions (in this case
addressing sensitivity, or the lack of it, in software
tuning parameters and their defaults).

Impact Calculations Common practice has
come to use effect estimates from observational air
pollution studies to estimate the impact of air pollu-
tion on a large population such as an entire country.
If effect estimates from the NMMAPS 90 cities mor-
tality study were applied, the revised impact would
be approximately half of the estimated impact
derived using the original effect estimates. This
example reinforces the need to qualify estimates of

Continued
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impact by specifying the assumptions and uncer-
tainties on which the estimates are based.

Long-Term Effects Studies Some have noted
that the calculated health impact of short-term air
pollution based on time-series studies is substan-
tially smaller than that of long-term air pollution
based on cohort studies. Because of the vastly larger
number of time-series studies performed, however,
assessors of health risk from air pollution have
often had more confidence in time-series results
than in results from the few cohort studies. The
problem with applying GAMs has involved prima-
rily the time-series studies, however, and correction
of the problem has generally decreased estimates of
effect from these studies. Thus, more emphasis on
cohort studies can be expected. Further, uncer-
tainty regarding the estimates of effect obtained
from time-series studies can also be expected to
place additional emphasis on long-term air pollu-
tion studies, on studies of natural experiments

(so-called quasi-experimental studies), and on
human and animal experimental studies.

CLOSING

The Panels were impressed by the rapid
reporting and comprehensive response to the dis-
coveries by NMMAPS and other investigators
regarding GAM software used in time-series
studies. NMMAPS investigators conducted and
reported results of additional analyses of virtually
all of their previous NMMAPS research. Authors of
the short communication reports were responsive
to EPA’s requests and completed a great deal of
work in a short period of time. As with findings of
the original analyses, all of the revised findings will
continue to inform the regulatory process regarding
PM. At the same time, these revised analyses have
renewed the interest in important questions and
uncertainties that should inform future time-series
analyses of air pollution and health.
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Over the past decade, time-series studies con-
ducted in many cities have provided information
about the association between daily changes in
levels of particulate matter (PM*) and daily mor-
bidity and mortality. The National Morbidity, Mor-
tality, and Air Pollution Study (NMMAPS), funded
by HEI, was designed to address concerns about
bias in the selection of cities for air pollution
studies. This study evaluated mortality in the 90
largest cities in the US, as well as morbidity among
elderly residents of 14 cities with daily air pollution
and hospitalization data. Its investigators also esti-
mated the cumulative effect over several days of air
pollution exposure on mortality among elderly res-
idents of 10 cities with daily pollutant monitoring
(Samet et al 2000a,b). In addition, the investigators
estimated the overall mean effect of PM on mor-
tality across cities and heterogeneity among cities.

Time-series analyses such as these must account
for concurrent time-varying factors that may affect
health outcomes so that the effects of these factors
are not counted as air pollution effects. Such fac-
tors include temperature, atmospheric pressure,
and humidity as well as unmeasured risk factors.
Although many methods can be used to adjust for
time-varying factors, generalized additive models
(GAMs) have become the favored method in recent
years. In May 2002, NMMAPS investigators at
Johns Hopkins University discovered that part of
the programming in the S-Plus statistical software,
which they and many others have used to fit GAMs
to the data in time-series studies, was inappro-
priate to analyze such data (Dominici et al 2002).
Specifically, they found that the iterative process to
obtain effect estimates in the S-Plus program did
not converge to the true estimate of the regression
coefficients. After discovering this problem, the
NMMAPS investigators quickly initiated alterna-
tive analyses, including applying GAM with
appropriate convergence criteria, to see how the
results might change.

* A list of abbreviations and other terms appears at the end of
the Investigators’ Report.

Health Effects Institute © 2003

At about the same time, investigators at Health
Canada (Ramsay et al 2003) found that under certain
conditions GAM S-Plus software programming
underestimated standard errors of the regression
coefficients. Because results of NMMAPS and other
time-series studies were under review as part of the
periodic review of the National Ambient Air Quality
Standards (NAAQSs) for PM, understanding how
these results might be changed by new analyses
became a priority. HEI asked the NMMAPS investi-
gators to prepare reports presenting the results of
new analyses that had been undertaken to deter-
mine how effects estimates would change with dif-
ferent analytic methods and to obtain more accurate
standard errors. A Special Panel of the HEI Review
Committee, comprising members of the earlier
NMMAPS Panel, reviewed these reports.

In July 2002, the US Environmental Protection
Agency (EPA)’s Clean Air Scientific Advisory Com-
mittee (CASAC) met to discuss the Air Quality Cri-
teria for PM draft document (PM criteria
document), which is to be produced every five
years as part of the required review of PM NAAQSs.
This document is a comprehensive literature
review emphasizing new findings published since
the previous criteria document. Because of the
recent discovery of problems with software used in
most air pollution time-series studies, EPA modi-
fied plans for discussion of the draft PM criteria
document. Sections of the criteria document on epi-
demiologic studies were not fully reviewed at the
meeting. Instead, that time was devoted to discus-
sion of the “GAM issue” and its implications for
interpretation of studies of the health effects of PM
exposure. NMMAPS investigators from Johns Hop-
kins University and Harvard University, who had
submitted preliminary reports on revised analyses
to HEI and EPA, presented their revised results in
that session, as did several other investigators. EPA
identified additional key studies from the US,
Canada, and Europe cited in the criteria document
that had employed GAMs, and requested that the
investigators who had conducted those studies
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carry out limited revised analyses. EPA asked that they (1)
conduct new analyses of their original data using the same
nonparametric approach but with more stringent conver-
gence criteria; and (2) compare the sensitivity of findings
obtained with nonparametric methods to findings from
parametric models. Use of the parametric models was also
aimed at obtaining more accurate standard errors. EPA
requested that HEI review the short communication reports
submitted by these investigators on their revised analyses
and write a Commentary on the effects of different analytic
approaches on the findings. HEI agreed to take on this effort
along with its review of the revised analyses of NMMAPS II,
which was already under way. A Special Panel of the HEI
Review Committee, comprising members of the earlier
NMMAPS Panel with added methodologists, reviewed the
short communication reports.

As explained above, the NMMAPS revised reports and
the short communication reports on other revised analyses
arose in different ways, and consequently, they have been
reviewed somewhat differently. The NMMAPS reports pro-
vide results of revised analyses of the analyses presented in
the original NMMAPS 1II report. Because of earlier review
efforts, most Panel members already had a thorough under-
standing of the design, conduct, and original data analyses
of NMMAPS II. Their review focused on comparing new
and original NMMAPS findings, what the impact of these
changes might be, and what approaches might be devel-
oped to improve future analytic methods. The 21 reports
on revised analyses from other time-series studies were
much shorter and included revised analyses, for the most
part, of a selected number of the original analyses in these
studies. For this review, the Panel looked at how results
differed when applying different analytic programs, rather
than evaluating the original study design. Although EPA
had not requested investigators to conduct additional sen-
sitivity studies, the Panel did review how findings were
affected by different modeling of potentially confounding
variables and time in those studies where the investigators
had reported such sensitivity analyses.

Thus this Special Report contains two sets of reports,
one on revised analyses of NMMAPS II data, and one on
revised analyses of other time-series studies of the health
effects of particulate air pollution.

*  Revised Analyses of the National Morbidity, Mortality,
and Air Pollution Study, Part II This part of the Special
Report presents results from Dominici and colleagues
and Schwartz and colleagues and a Commentary on
these results by a Special Panel of the HEI Health
Review Committee.

*  Revised Analyses of Selected Time-Series Studies This
part of the Special Report comprises 21 short commu-
nication reports on results of revised analyses of other
time-series studies, previously reported in 37 publica-
tions and selected by the EPA as contributing key
information to the current draft of the PM criteria doc-
ument. It also includes a Commentary by a Special
Panel of the HEI Review Committee on the findings in
these reports.

This Special Report also includes an HEI Statement, a
short synopsis of the findings and their implications for
both sets of reports.
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Mortality Among Residents of 90 Cities

Francesca Dominici, Aidan McDermott, Michael Daniels, Scott L Zeger, and Jonathan M Samet

ABSTRACT

This report presents findings from updated analyses of
data from 90 US cities assembled for the National Morbidity,
Mortality and Air Pollution Study (NMMAPS*). The data
were analyzed with a generalized additive model (GAM)
using the gam function in S-Plus (with default convergence
criteria previously used and with more stringent criteria)
and with a generalized linear model (GLM) with natural
cubic splines. With the original method, the estimated effect
of PM, (particulate matter 10 pm in mass median aerody-
namic diameter) on total mortality from nonexternal causes
was a 0.41% increase per 10 ng/m3 increase in PM;; with
the more stringent criteria, the estimate was 0.27%; and with
GLM, the effect was 0.21%. The effect of PM, on respiratory
and cardiovascular mortality combined was greater, but the
pattern across models was similar. The findings of the
updated analysis with regard to spatial heterogeneity across
the 90 cities were unchanged from the original analyses.

INTRODUCTION

This report describes new analyses, using updated
methods, of data assembled on daily air pollution and mor-
tality for NMMAPS. Findings of this multiyear project were
previously reported, both as reports of the Health Effects

* A list of abbreviations and other terms appears at the end of the report.

This report is part of Health Effects Institute Special Report Revised Analy-
ses of Time-Series Studies of Air Pollution and Health, which also includes
another report on NMMAPS II data, 21 short communication reports, two
HEI Commentaries by special panels of the Health Review Committee, and
an HEI Statement. Correspondence concerning this section may be
addressed to Dr Francesca Dominici, Department of Biostatistics, Bloomberg
School of Public Health, Johns Hopkins University, 615 N Wolfe St, Rm E
3148, Baltimore MD 21205.

Further background and data on this revised analysis are available at
www.biostat.jhsph.edu/~fdominic/HEI/nmmaps.html.

Although this document was produced with partial funding by the United
States Environmental Protection Agency under Assistance Award
R82811201 to the Health Effects Institute, it has not been subjected to the
Agency’s peer and administrative review and therefore may not necessarily
reflect the views of the Agency and no official endorsement by it should be
inferred. The contents of this document also have not been reviewed by pri-
vate party institutions, including those that support the Health Effects Insti-
tute; therefore, it may not reflect the views or policies of these parties, and
no endorsement by them should be inferred.

Health Effects Institute © 2003

Institute (Samet et al 2000b,c) and in the peer-reviewed lit-
erature (Daniels et al 2000; Dominici et al 2000a,b; Samet et
al 2000a; Zeger et al 2000). After these original publications
became available, researchers discovered that the results
had been affected by use of the gam function in the S-Plus
software (Insightful Corp, Seattle WA), which introduced an
upward bias in effect estimate of particulate air pollution on
mortality. We have described the basis of this problem
(Dominici et al 2002b) and reported the findings of initial
reanalyses in an interim note to the Health Effects Institute.
The revised findings and the note were also presented by
Drs Dominici, Zeger and Samet to the US Environmental
Protection Agency at a meeting of the Clean Air Scientific
Advisory Committee of the Science Advisory Board on July
18 and 19, 2002.

Bias in the estimates resulted from implementing the
GAM with the default convergence criteria in the S-Plus
gam function (version 3.4). The potential for this bias was
identified through sensitivity analyses undertaken to
better understand unexpected results in analyses periph-
eral to the NMMAPS focus. Details of how the problem
was identified, and of its consequences, are provided else-
where (Dominici et al 2002b). Further work is being con-
ducted to explore the basis of this bias and its dependence
on details of model specification. Bias from the NMMAPS
application of the GAM likely reflects the difficulty of esti-
mating the relatively weak effect of air pollution in data
with several temporally correlated variables, including air
pollutant levels, temperature, and humidity.

The S-Plus (version 3.4) gam function had been used
throughout the NMMAPS project to estimate relative rates
of mortality attributable to PM;, while controlling for time
trends, weather variables, and other possible confounders.
For the recalculated analyses based on GAMs, we used
markedly more stringent convergence criteria (Dominici et
al 2002b).

Other possible problems with using GAMs in time-
series analyses of air pollution data have been recently
identified. In the presence of concurvity (that is, residual
nonlinear correlation in the data), the standard error of the
air pollution effect is likely to be underestimated because
of the approximate method used for its calculation.
Ramsay and colleagues (2003) have further investigated
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the implications of this standard error approximation in
time-series studies of air pollution and mortality.
Dominici and colleagues (2003a) have recently released a
new gam function that calculates the asymptotically exact
standard error of the air pollution effect.

We are continuing with methodologic investigations on
the adequacy of GAMs for analyses of time-series data in air
pollution and health and with comparisons of a GAM with
fully parametric alternatives (Dominici et al 2003a). We have
completed reanalyses of the data leading to the most central
findings of prior NMMAPS reports and other publications.
We have carried out these analyses using: (1) the gam func-
tion with substantially more stringent convergence criteria;
and (2) a GLM with natural cubic splines, a fully parametric
alternative. Additional reanalyses of the NMMAPS data are
summarized elsewhere (Dominici et al 2002a, 2003b,c).

METHODS

The methods of NMMAPS have been fully described in
previous reports of the Health Effects Institute (Samet et al
2000b,c). The NMMAPS project was implemented to
describe the effect of particles and other air pollutants on
daily mortality across the United States. The methods
were intended to provide a picture of regional variation in
the effect of particles and to provide a national effect esti-
mate, if appropriate (Dominici et al 2002a). A uniform
approach taken for the within-city models was based on
extensive sensitivity analyses of data for Philadelphia
(Kelsall et al 1997); that is, the same variables and
smoothing functions were used in each city to control for
possible confounding (Table 1).

To evaluate the impact of default gam settings on pub-
lished analyses and to provide updated results, we reana-
lyzed the NMMAPS data with three methods: model 1,
GAM with S-Plus default convergence parameters (the
original analyses); model 2, GAM with greatly more strin-
gent convergence parameters than the defaults (Dominici
et al 2002b); and model 3, Poisson regression model with
parametric nonlinear adjustments for confounding factors
(specifically, GLM with natural cubic splines).

Model 1 corresponds to the GAM used in prior analyses
(Dominici et al 2000a, 2002a; Samet et al 2000a). Model 2 is
also the GAM used in previous analyses but with stricter
convergence criteria and a substantially larger number of
maximum iterations in the local-scoring and backfitting
algorithms (Dominici and colleagues 2003b). Comparison of
estimates from models 1 and 2 provides an indication of sen-
sitivity of findings to the convergence criteria. Model 3
(GLM) is a fully parametric analog of model 2, estimated by
an iteratively reweighted least squares (IRWLS) algorithm. In
model 3, we replaced smoothing splines with natural cubic
splines having the same degree of freedom in the smooth
functions of time, temperature, dew point, and interactions
between age group indicators and the smooth functions of
time. In model 3 with natural cubic splines and a fixed
number of degrees of freedom, the knots were equally spaced
at quantiles of the distribution of each covariate. A compar-
ison of estimates from models 2 and 3 indicated the sensi-
tivity of findings to the statistical method selected.

We estimated the 90 city-specific relative rates of mor-
tality from nonexternal causes associated with a 10 pg/m?®
increase in PM;y under models 1, 2 and 3. The 90-city spe-
cific relative rates were pooled across cities using a two-
stage hierarchical model and a three-stage regional model
with noninformative priors on the variance components

Table 1. Potential Confounders or Predictors in Estimation of City-Specific Relative Rates Associated with Particulate
Air Pollution Levels, and Rationale for their Inclusion in the Model

Modelling of Predictors

Primary Reasons for Inclusion

Indicator variables for the three age groups

Indicator variables for the day of the week

Smooth functions of time with 7 df/yr
Smooth functions of temperature with 6 df

Smooth functions of dew point with 3 df

Separate smooth functions of time (2 df/yr) for each age
group contrast

To allow for different baseline mortality rates within each
age group

To allow for different baseline mortality rates within each
day of the week

To adjust for long-term trends and seasonality
To control for the known effects of weather on mortality

To control for the known effects of humidity on mortality

To separately adjust for longer-term time trends within each
age group

10
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(Dominici et al 2000a, 2002a). In Appendix A, we provide
an assessment of the sensitivity of findings to details of the
approach used for combining estimates across cities; these
analyses show that the results are robust to these choices.
Markov chain Monte Carlo analyses were performed to esti-
mate posterior distributions of all parameters of interest
with the Bayesian inference using Gibbs sampling (BUGS)
program (Thomas et al 1992). For comparison, city-specific
estimates were also pooled using fixed effect models and
random effect models with moment estimator of the
between-city variance (DerSimonian and Laird 1986).

Within each city, multipollutant models provide rela-
tive rate estimates of mortality associated with exposure to
each of the pollutants included in the model. These rela-
tive rates can be pooled in a univariate or multivariate
fashion. In a univariate fashion, the city-specific coeffi-
cients for each pollutant are pooled separately using fixed
effects, random effects, or Bayesian methods. However,
univariate pooling ignores the within-city statistical corre-
lations among relative rate estimates for the pollutants
jointly included in the model. Because of this limitation,
the method of multivariate pooling, which takes these cor-
relations into account, was chosen for all multipollutant
analyses. Multivariate pooling was performed by using a
Bayesian two-stage multivariate normal model (Lindley
and Smith 1972) implemented by the software TLNISE
(Everson and Morris 2000), which allows specification of
noninformative priors on the heterogeneity covariance
matrix. Sensitivity analyses of the pooled effects to the
specification of the prior distribution on the covariance
matrix are reported in Appendix A.

RESULTS

The reanalyses presented in this report focus on the 90
cities included in the complete NMMAPS database.
Results were obtained using Bayesian methods that pro-
vide posterior means and posterior intervals of the param-
eters of interest. These are the Bayesian analogs of point
estimates and confidence intervals, respectively. The sen-
sitivity of findings with respect to non-Bayesian alterna-
tives has been systematically explored in all NMMAPS
analyses. We report estimates of the following quantities of
interest:

e national average air pollution effect (posterior mean)
and its statistical uncertainty (95% posterior interval),
and

e heterogeneity of the air pollution effects across the 90
cities and its statistical uncertainty. The heterogeneity

is quantified by the between-city standard deviation
of true city-specific air pollution effects.

NATIONAL AVERAGES

The national average estimates varied among models 1,
2, and 3. When we imposed stricter convergence criteria
on the gam function of S-Plus, the national average esti-
mate across the 90 cities at lag 1 changed from a 0.41%
increase in total mortality per 10 pg/m? increase in PM;,
(under model 1) to a 0.27% increase (under model 2).
When GLM with natural cubic splines was used (model 3),
the national average estimate was 0.21% per 10 pg/m3
increase in PMy,.

Figure 1 plots the original calculations (obtained under
model 1) against the updated city-specific effect estimates
(obtained under model 3) for total mortality as the out-
come and PM; at lag 1. Note the upward bias in the orig-
inal estimates and the generally close correlation between
the pairs of effect estimates from model 1 and model 3. The
black square is plotted at the original versus the updated
national average estimate across the 90 cities. Its width
and height correspond to two standard errors of the
national average estimates. With the original approach, the
national average estimate was 0.41% per 10 pg/m?
increase in PM, (posterior SE equal to 0.06); the updated
national average estimate was 0.21% per 10 pg/m?
increase in PM; (posterior SE equal to 0.06).
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Figure 1. Percentage of change in total mortality from nonexternal
causes per 10 pg/m® incease in PM,, at lag 1: previously published
versus revised estimates, 90 US cities (1987-1994). The black square is
plotted at the original versus updated national average estimate across
the 90 cities. Its width and height corrrespond to two standard errors of
the national average estimates.
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A. Revised Pooled Estimates
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Figure 2. Marginal posterior distributions for the national average effect of PM;, on total mortality from nonexternal causes at lags 0, 1 and 2 for the 90
US cities. A. Revised national average estimates. B. Previously published national average estimates. City-specific estimates were pooled under a two-stage
normal-normal hierarchical model with noninformative prior on the heterogeneity variance. Boxes provide the posterior probabilities that the national

average estimates are greater than 0.
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Figure 3. Posterior means and 95% posterior intervals of the national
average estimates of PM,, effects on mortality from nonexternal causes
for the previously published (old) and the revised (new) estimates at lag
0, 1 and 2 for the 90 US cities.

Figure 2 provides the marginal posterior distributions of
the national average estimates, original and updated, for
total mortality at lags 0, 1, and 2. The national average esti-
mates for the change in total mortality at lags 0, 1, and 2
were 0.07% (posterior SE equal to 0.06), 0.21% (posterior
SE equal to 0.06), and 0.10% (posterior SE equal to 0.06).
The upward bias in the original national average estimates
is evident. In the updated analyses, the effect remained
greatest at lag 1, and the posterior probabilities for a
national average effect greater than zero were all close to
one. The corresponding point estimates and 95% posterior
intervals are given in Figure 3.

Figure 4 shows that the general pattern for cause-specific
mortality is unchanged with the greatest effect for
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Figure 4. Marginal posterior distributions for revised national average
effects of PM, at lag 1 for total mortality, cardiovascular-respiratory
mortality, and other causes mortality for the 90 US cities. The box at the
top right provides the posterior probabilities that the overall effects are
greater than 0. City-specific estimates were pooled under a two-stage
normal-normal hierarchical model with noninformative prior on the het-
erogeneity variance.

cardiovascular and respiratory mortality (0.31% per
10 pg/m?® increase in PM; at lag 1, posterior SE equal to
0.09). The national average estimates for changes in
cardiovascular and respiratory mortality at lags 0 and 2
were 0.13% (posterior SE equal to 0.09) and 0.20%
(posterior SE equal to 0.09). The general insensitivity of the
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Figure 5. Marginal posterior distributions for the revised national average
estimates of PM,, on total mortality from nonexternal causes at lag 1 with
and without control for other pollutants for the 90 US cities. The box at the
top right provides the posterior probabilities that the overall effects are
greater than 0. City-specific estimates were pooled in a multivariate fashion
under a two-stage normal-normal hierarchical model.

PM, , effect on total mortality at lag 1 to inclusion of other
pollutants in the model is shown in Figure 5. The posterior
mean of the national average effect of PM,, on total
mortality was essentially unchanged with the inclusion of
either ozone (O3) alone or of O5 with additional pollutants.
We also performed sensitivity analyses of the multivariate
pooling methods with respect to prior distributions on the
between-city covariance matrix. Results are summarized
in Table A.1. The national average effect of PM;, adjusted
for other pollutants was also robust to the choice of priors
when pooling was performed in a multivariate fashion.

REGIONAL AVERAGES

The average estimates for total mortality are mapped in
Figure 6, and the individual city estimates are plotted by
region in Figure 7. The general patterns were unchanged,
and the northeast continued to have the highest regional
mean. Sensitivity of regional average estimates to lag spec-
ification is presented in Figure 8. Values tend to be highest
within most regions at lag 1, as found with the national
average estimate (Figure 2). Similar analyses were also car-
ried out for cardiovascular and respiratory mortality
(Figure 9). For this cause-of-death grouping, the pattern of
regional variation was comparable to that for all nonex-
ternal causes of death (Figure 6). The effect of PM,, was
greatest in the northeast region. Posterior means and 95%
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Figure 6. Posterior means divided by posterior standard deviations
( ratios) of regional effects of PM,, at lag 1 for total mortality from non-
external causes.

Table 2. Posterior Means and Posterior 95% Intervals of
the Between-City Standard Deviations for Total Mortality
at Lag 1 Under the Three Models

Posterior 95%

Posterior Mean Interval
Model 12 0.112 0.022, 0.298
Model Zb 0.088 0.021, 0.240
Model 3¢ 0.075 0.021, 0.198

8 GAM with default convergence parameters.
b GAM with more stringent convergence parameters.

¢ GLM with natural cubic splines.

posterior intervals of the regional average effects for total
mortality and for cardiovascular and respiratory mortality
are summarized in Table A.2.

HETEROGENEITY

We first tested the hypothesis of no heterogeneity by
performing a standard x? test (Hedges and Olkin 1985),
and we accepted the null hypothesis. This result is likely
due to the large statistical uncertainty of the city-specific
relative risk estimates. We then repeated the test by gradu-
ally reducing the statistical variances and found that a
reduction of at least 30% in the statistical variances would
be necessary to reject the null hypothesis of no heteroge-
neity. We then implemented a Bayesian analysis with a
two-stage hierarchical model and estimated marginal pos-
terior distribution of the heterogeneity parameter. Table 2
summarizes posterior means and posterior intervals of the
between-city standard deviations for total mortality and
PM, at lag 1 under models 1, 2 and 3. With the updated
method, we estimated slightly less heterogeneity of the air

13
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Figure 7. Maximum likelihood estimates and 95% confidence intervals of the percentage increase in total mortality from
nonexternal causes per 10 pg/m? increase in PM;, for each location. The solid squares with the bold segments denote the
posterior means and 95% posterior intervals of the pooled regional effects. At the bottom, marked with a triangle, is the
overall effect for PM, for 88 US cities (Honolulu and Anchorage are excluded).
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Figure 8. Posterior means and 95% posterior intervals of regional effects of PM,, on total mortality from nonexternal causes at lags 0, 1, and 2 for
the 88 US cities. At the bottom are the overall effects at lags 0, 1, and 2. City-specific estimates were pooled under a three-stage normal-normal hierar-
chical model with no informative priors on the within-region and between-region heterogeneity variances (see Appendix for details and sensitivity
analyses to the prior distributions).
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Figure 9. Maximum likelihood estimates and 95% confidence intervals of the percentage change in cardiovascular and respiratory mor-
tality per 10 pg/m? increase in PM,, for each location. The solid squares with the bold segments denote the posterior means and 95% poste-
rior intervals of the pooled regional effects. At the bottom, marked with a triangle, is the overall effect for PM, for the 88 US cities (Honolulu
and Anchorage are excluded).
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Figure 10. Posterior means and 95% posterior intervals of national
average estimates of PM, effects on total mortality from nonexternal
causes at lag 1 for the 90 US cities, under nine alternative scenarios for
adjustments for confounding factors. “222” is the baseline scenario with 7
df per year, 6 df, and 3 df in the smooth functions of time, temperature, and
dew point, respectively. 4 and 1 denote that the df have been doubled and
halved, respectively. Our baseline estimate (scenario “222”) shows a 0.21%
increase in mortality per 10 pg/m® increase in PM; . The national average
estimates range from 0.32% in scenario “111” to 0.17% in scenario “414.”

pollution effects among cities. Under the same model for
the pooling (a two-stage normal-normal model), the poste-
rior mean of the between-city standard deviation moved
from 0.112 in model 1 to 0.088 in model 2. When GLM
with natural cubic splines was used (model 3), the poste-
rior mean of the between-city SD was 0.075. The overlap
between the three posterior distributions was substantial,
suggesting little sensitivity of the pattern of heterogeneity
among cities to the analytic approach.

SENSITIVITY ANALYSES

We performed sensitivity analyses of the national
average air pollution effects with respect to several key
modeling assumptions:

e adjustment for confounding factors (Figure 10);

e choice of the prior distributions on the heterogeneity
variance (eg, the between-city standard deviation
squared) (Figure 11); and

e statistical models for heterogeneity: two-stage hierar-
chical model, three-stage regional model, and spatial
correlation model (Figure A.1).

Figure 10 gives posterior means and 95% posterior
intervals of the national average effects of PM; for total
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Figure 11. Marginal posterior distributions for national average esti-
mates of PM,  effects on total mortality from nonexternal causes at lag 1
under four prior specifications for heterogeneity variance: 1) flat 1/0 2
~ G(0.001, 0.001); 2) half-normal ¢2 ~ N(0,1000)I_, , ¢; 3) o ~ IG(2, 1);
and 4) ¢? ~ IG(3, 2). IG denotes the inverse gamma distribution.

mortality from nonexternal causes at lag 1 under nine
alternative scenarios of adjustment for confounding fac-
tors. Across the nine scenarios, we varied the degree of
freedom for each of the three temporal confounders: time,
temperature, and dew point. National average effects were
not very sensitive to the specification of the degree of
freedom in the smooth functions of time, temperature and
weather. The increase in total mortality per 10 pg/m3
increase in PM; of the pooled estimates ranged from
0.17% to 0.32% under the nine scenarios. The evidence of
association was strong in every case.

Posterior distributions of the national average effects of
PM, g for total mortality at lag 1 under differing prior distri-
butions for the heterogeneity variance are plotted in Figure
11. Pooled effects of PM; were only moderately sensitive
to the prior distributions for the heterogeneity variance.
Further sensitivity analyses of findings to the choice of the
prior distributions are detailed in Appendix A. Sensitivity
of the national average estimates to choice of statistical
models for heterogeneity is also detailed in Appendix A.

MULTIPOLLUTANT ANALYSES

Finally, we updated analyses of the effects of pollutants
other than PM, ; on total mortality (Figures 12 through 16).
These analyses include varying sets of the 90 cities,
depending on the availability of the various pollutants for
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the individual cities. Because the data were more limited,
the 95% posterior intervals of the national averages were
substantially wider for these analyses than for those
directed at PM;,. For O5 (Figure 12), the estimates were
uniformly positive, both for O3 alone and with inclusion of
other pollutants in the model, although the 95% posterior
intervals were wide. The data for estimating the effect of
Oj were limited to the summer months (Figure 13). For
sulfur dioxide (SO,) (Figure 14), nitrogen dioxide (NO,)
(Figure 15), and carbon monoxide (CO) (Figure 16), the
results did not indicate associations of these pollutants
with total mortality.
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Figure 12. Posterior means and 95% posterior intervals of national
average estimate of O3 effect on total mortality from nonexternal causes
at lags 0, 1, and 2 within sets of the 90 cities with pollutant data avail-
able. Models A = Oj alone; B = O3 + PM;g; C = O3 + PM;g + NOy; D =05 +
PMq + SOy; E = O3 + PMyq + CO.
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Figure 13. Marginal posterior distributions of the national average esti-
mates of O; effects on total mortality at lag 0 for all seasons, summer
(June, July, August) and winter (December, January, February) for the 90
cities.
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Figure 14. Posterior means and 95% posterior intervals of national
average estimates of SO, effects on total mortality from nonexternal
causes at lags 0, 1, and 2 within sets of the 90 cities with pollutant data
available. Models A = SO, alone; B = SO, + PM;4; C = SO, + PMy + Og;
D = S0, + PMj + NO,. E = SO, + PMy4 + CO.
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Figure 15. Posterior means and 95% posterior intervals of national
average estimates for NO, effects on total mortality from nonexternal
causes at lags 0, 1, and 2 within sets of the 90 cities with pollutant data
available. Models A = NO, alone; B = NO, + PM;; C = NO, + PMy; + O3;
D = NO, + PM,q + SOy; E = SO, + PM; + CO.
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Figure 16. Posterior means and 95% posterior intervals of national
average estimates for CO effects on total mortality from nonexternal
causes at lags 0, 1, and 2 within sets of the 90 cities with pollutant data
available. Models A = GO alone; B = CO + PM;y; C = CO + PM;( + Og;
D =CO + PMyj + NOy; E = CO + PMy; + SO,.
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DISCUSSION

The NMMAPS modeling strategy originated with exten-
sive exploration of the sensitivity of findings from the Phil-
adelphia time-series data (Kelsall et al 1997). That work
used GAM as the basic modeling approach and was imple-
mented with the function gam in S-Plus. The gam default
convergence criteria of S-Plus version 3.4 were used. The
initial phase of model development (Kelsall et al 1997)
included detailed sensitivity analyses with respect to model
specification for confounder adjustment and exposure vari-
ables but not with respect to either the statistical model
itself or the software for implementing the model.

We have now identified an unanticipated influence on
the quantitative NMMAPS results. As documented in
Dominici and colleagues (2002b), the NMMAPS estimates
of national average relative risks depend upon the conver-
gence criteria in S-Plus and on the specific statistical model
used. In our particular application, reliance on the default
convergence criteria led to an upward bias of 0.14% (0.41—
0.27) per 10 pg/m? increase in PM,,. When a GLM was used
instead of a GAM, the estimate became 0.21% per 10 jig/m?
increase in PM; . In addition, standard errors of the city-
specific estimates were smaller in the GAM than in the GLM
by 16% on average, even when more strict convergence
parameters in the S-Plus function gam were used (Cham-
bers and Hastie 1992; Ramsay et al 2003).

While the quantitative estimates changed with the
tighter convergence criteria in the gam function or with
switching to a GLM, the major scientific findings of
NMMAPS did not. Strong evidence remains of an associa-
tion between acute exposure to particulate air pollution
(PM, () and daily mortality one day later (lag 1). This asso-
ciation was strongest for respiratory and cardiovascular
causes of death, as anticipated based on concepts of under-
lying susceptibility. The association of PM;, with mor-
tality could not be attributed to any of the other pollutants
studied: NO,, CO, SO, or Os.

In our NMMAPS reanalyses, we compared the original
results to updates using a GAM with more stringent conver-
gence criteria and a GLM. For NMMAPS, our simulation
studies showed that the GLM produced less biased esti-
mates of the pollution relative rate than did the GAM. Given
our current understanding, we conclude the following.

1. GAMs with nonparametric smoothers (such as
smoothing splines or locally weighted smoothers
[LOESS]) provide a more flexible approach for
adjusting for confounders compared to GLM with
regression splines. This approach might also result
in a lower prediction error for GAMs than for GLMs.

2. Work is in progress to overcome the problem of
underestimating standard errors in GAM (Dominici
et al 2003a); preliminary results point toward an easy
and not computationally expensive solution.

3. Multicity analyses are less affected by underestima-
tion by a GAM of the city-specific standard errors than
are single-city analyses. In multicity analyses, the sta-
tistical uncertainty of the national average air pollu-
tion effect is measured by the total variance, defined as
the sum of the within-city plus the between-city vari-
ance. Under hierarchical approaches for multicity
analyses, underestimation of the within-city variances
is compensated by overestimation of between-city
variance, resulting in an almost unchanged total vari-
ance (Daniels et al 2003).

Further statistical comparisons among alternative mod-
eling approaches for analyses of time-series data in air pol-
lution and health are warranted, as is the development of
new methods that avoid these pitfalls. In summary, the
analyses reported by Dominici and colleagues (2002b)
indicate some sensitivity of the quantitative, but not qual-
itative, results of the air pollution time-series analyses to
modeling approaches and estimation procedures. Given
the weak and nonspecific acute effect of air pollution on
daily mortality, sensitivity of estimates to model choice
would be anticipated, particularly because of the need to
control for other time-correlated factors (such as tempera-
ture and season) that affect mortality. National average
estimates were roughly equally sensitive to the adjustment
for confounding factors under a range of plausible sce-
narios within model choice.

Particulate matter continued to be associated with mor-
tality in the updated analyses, and the general pattern of
spatial variability across the United States was unchanged.
Ozone was associated with total mortality in the summer
months. In our judgment, the new sources of uncertainty
arising from model choice lead to quantitative changes in
estimates without qualitative implications. Development
of analytic models underlying the NMMAPS results
involved multiple points of decision with assumptions: for
example, choice of statistical model (eg, GAM or GLM),
adjustment for confounding factors (eg, specification of
temperature, season, and long-term trends in disease), and
specification of exposure. Each of the decisions made by
the modeler may affect the model results to a degree.
While some sensitivity of findings to modeling decisions
is inherent in estimating the small acute effects of particles
on mortality, overall consistency of results across reason-
able modeling choices is needed. We have found such con-
sistency in these updated analyses of the NMMAPS data.
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APPENDIX A. Sensitivity Analyses

NATIONAL AVERAGE WITH RESPECT TO MODELS
FOR HETEROGENEITY

We have performed sensitivity analyses on the estimate
of national average with respect to model assumptions
about heterogeneity and spatial correlation. In the first
model, known as the three-stage regional model (Daniels et
al 2003), we grouped the 88 counties into seven geographic
regions (Northwest, Upper Midwest, Industrial Midwest,
Northeast, Southern California, Southwest, Southeast), fol-
lowing the stratification of the United States used in the
1996 Review of the National Ambient Air Quality Standards
for Particulate Matter (Environmental Protection Agency
1996). We assumed that city-specific estimates belonging to
a particular region have a distribution with mean equal to
the corresponding regional effect. This assumption implies
that regional heterogeneity exists: City-specific estimates of
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the air pollution effects are shrunk toward their regional
means, and regional means are shrunk toward the national
mean, respectively. The results of this model are shown in
Figures 6 and 9 and in Table A.2.

One limitation of this regional modeling approach is
that two cities, far apart in terms of their geographical dis-
tance but belonging to the same geographical region, are
considered more similar than two closer cities that belong
to two separate geographical regions. To overcome this
limitation, we relaxed the regional model assumption by
developing a second model called the spatial correlation
model (Dominici et al 2002a). Here we assumed that each
city-specific air pollution effect is shrunk toward the
average air pollution effects in the neighboring cities,
where the definition of neighboring cities is based on their
geographical distance (Diggle et al 1998).

The national average estimate is robust to these model
assumptions. Posterior means and posterior 2.5 and 97.5 per-
centiles of the national average estimate for total mortality

and PM, at lag 1 can be calculated under three models:

1. two-stage hierarchical model (our baseline approach
applied to 90 cities), which assumes independence
among the city-specific effects;

2. three-stage regional model (described previously as
applied to 88 cities); and

3. spatial correlation model (described previously as
applied to 88 cities).

With these models, the results were 0.21 (0.04, 0.33),
0.22 (0.03, 0.40), and 0.22 (0.10, 0.38), respectively.

Figure A.1A shows the marginal posterior distributions
of the overall effects under models 1, 2 and 3. As expected,
model 2 shows a slightly larger posterior interval than
models 1 and 3 because of the assumption of regional het-
erogeneity. More specifically, in model 2 the heterogeneity
is defined as total variance (ie, the sum of the variance
across cities of the city-specific effects within each region
plus the variance across regions of the regional estimates).

Table A.1. National Average Effects of PM; at Lag 1 on Total Mortality Under Four Multipollutant Models and Four

Prior Distributions on Heterogeneity Covariance Matrix®

Posterior Means and 95% Posterior Regions

PMg + O4 PMg + O3 + NO, PM;y + O3 + SO, PMyg + O3 + CO
Prior 1 0.27 (0.12,0.44) 0.21 (—0.01,0.44) 0.21 (0.02,0.42) 0.24 (0.05,0.43)
Prior 2 0.25 (0.08,0.44) 0.22 (—0.04,0.50) 0.22 (—0.03,0.47) 0.20 (0.00,0.41)
Prior 3 0.28 (0.11,0.46) 0.21 (0.03,0.43) 0.20 (0.00,0.41) 0.24 (0.05,0.45)
Prior 4 0.24 (0.09,0.41) 0.21 (—0.02,0.46) 0.21 (—0.02,0.46) 0.20 (0.00,0.39)

@ Prior 1 is a uniform prior on the shrinkage covariance matrix, Prior 2 is the reference prior, Prior 3 is the Jeffrey’s prior, and Prior 4 is a flat prior on the
second stage covariance matrix. See Everson and Morris (2000) for details on the prior distributions.

Table A.2. Regional Effects for PM, at Lag 1 on Total Mortality from Nonexternal Causes and on Cardiovascular and

Respiratory Mortality

Posterior Means and 95% Posterior Regions
Regions Total (Baseline prior) Total Mortality (Prior A) CVDRESP (Baseline prior)
Northwest 0.18 (—0.04,0.40) 0.21 (—0.06,0.49) 0.29 (0.01,0.56)
Southwest 0.19 (—0.10,0.48) 0.22 (—0.10,0.55) 0.39 (0.02,0.75)
Southcal 0.27 (0.03,0.51) 0.30 (0.00,0.60) 0.31 (0.02,0.59)
Uppermidwest 0.13 (—0.19,0.46) 0.19 (—0.18,0.55) 0.26 (—0.11,0.63)
Industmidwest 0.19 (0.04,0.35) 0.24 (0.00,0.47) 0.29 (0.08,0.49)
Northeast 0.41 (0.04,0.78) 0.38 (0.01,0.76) 0.50 (0.05,0.94)
Southeast 0.19 (—0.07,0.45) 0.22 (—0.07,0.51) 0.34 (0.03,0.66)
National 0.22 (0.03,0.42) 0.25 (0.03,0.48) 0.34 (0.10,0.57)
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Figure A.1B shows the profile likelihood (obtained
under a two-stage normal-normal hierarchical model) and
the marginal posterior distributions of the standard devia-
tion among cities of the true relative rate under models 1,
2, and 3. A profile likelihood shows the weight of the evi-
dence about the amount of heterogeneity. This profile like-
lihood gave the largest weights (heights of the histogram)
at values close to zero, indicating homogeneity or almost
no heterogeneity. The marginal posterior distributions of
the between-city standard deviations under models 1 and
3 are similar to the profile likelihood. The larger posterior
mean of between-city standard deviation under model 2
reflects the assumption of regional heterogeneity (that is, a
larger total variance).

PRIOR DISTRIBUTIONS FOR HETEROGENEITY
PARAMETERS UNDER A THREE-STAGE
REGIONAL MODEL

In combining the data across cities, it is necessary to
make assumptions concerning the extent of heterogeneity in
the effect of air pollution on mortality among the locations.
The consequences of this assumption are explored below.

Let o and 72 denote the variance within region and the
variance across regions, respectively, of the true air pollution
effects. In our baseline analyses (prior model B), we allow a
range from little or no to more substantial heterogeneity, and
we assume noninformative priors on ¢ and 12 (gamma
[0.001, 0.001] for 1/0% gamma [0.001, 0.001] for 1/72).

A. National Average

— Two-stage
~——— Three-stage
—————— Spatial

-~ 1. -

-03-02-01 0 01 02 03 04 05 06 07 08 09 1
Pooled Relative Rate

In an alternative to our baseline analysis, which uses
noninformative priors, we assume heterogeneity of the
city-specific effects within regions (prior model A). More
specifically, in prior model A, we allow the assumption
that there is heterogeneity across cities, possibly substan-
tial in size, and exclude within-region homogeneity
(inverse gamma [3,1] for a2). The effect of this prior
assumption with respect to prior B is twofold: It produces
city-specific relative risk estimates that draw less heavily
on data from each city, and it yields slightly more conser-
vative confidence bands on the overall relative risk.

Figure A.2 shows city-specific posterior means and 95%
confidence regions for each of the 88 locations under the
baseline prior (prior model B—noninformative about het-
erogeneity) and the alternative prior distribution (prior
model A—assuming heterogeneity within regions). Also
shown are the posterior estimates and 95% intervals for
the regional and overall means. Estimates of the overall
PM,, relative risk are similar for the two prior models (B:
0.22 [0.02, 0.43], A: 0.25 [0.03, 0.47]). Note that under the
baseline prior B, the city-specific and region-specific esti-
mates are more like one another. This is because the poste-
rior distributions for the within-region and between-region
standard deviations of the true air pollution effects (o and
7) are centered at mean 0.08 and 0.16 respectively, indi-
cating a small degree of heterogeneity of the effects within
a region and across regions. For example, a median value
of o = 0.08 corresponds to 95% of cities having the PM;
relative risks of £ 2 X 0.08 = + 0.16 or approximately
+ 40% of the overall relative risk.

B. Heterogeneity

Two-stage
------ Three-stage
———=Spatial

A

AN R A S g =2 =
0 01 02 03 04 05 06 07 08 09 1
Standard Deviation Among Cities of the True Relative Rates

Figure A.1. Marginal posterior distributions of national average estimates of PM, effects on total mortality from nonexternal causes at lag 1. A.
National average under three models for heterogeneity: 1) two-stage model (baseline approach); 2) three-stage regional model; and 3) spatial correlation
model. B. Marginal posterior distribution of the standard deviation among cities of the true relative rate (a measure of heterogeneity) under models 1,

2 and 3. The histogram represents the profile likelihood.
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Morbidity and Mortality Among Elderly Residents
of Cities with Daily PM Measurements
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ABSTRACT

Generalized additive models (GAMs) have been widely
used in air pollution epidemiology due to their flexibility
in modeling nonlinear factors such as season and weather.
Recently several investigators have pointed out problems
with implementation of GAMs in some statistical pack-
ages. These problems involve lax default convergence cri-
teria and failure to properly estimate standard errors for
the parametric terms due to a programming shortcut.

In this report we present a revised analysis of NMMAPS
II data. To address the sensitivity of effect size estimates to
the choice of convergence criteria, we refit exactly the
models originally reported, changing only the convergence
criteria. To address the question of sensitivity to the incor-
rect estimation of standard errors, we present, compared,
and applied alternative approaches to nonparametric
smoothing that include natural splines, penalized splines,
and case-crossover analysis.

We reanalyzed hospital admissions data in 14 US cities
using GAM with stricter convergence criteria, natural
spline models, and penalized spline models.

We repeated the analyses for mortality data in 10 US
cities using GAM with stricter convergence criteria, nat-
ural spline models, penalized spline models, and case-
crossover analysis.

The overall effect estimate averaged over multiple studies
was usually not dramatically different from previously

* A list of abbreviations and other terms appears at the end of the report.

This report is part of Health Effects Institute Special Report Revised Analy-
ses of Time-Series Studies of Air Pollution and Health, which also includes
another report on NMMAPS II data, 21 short communication reports, two
HEI Commentaries by special panels of the Health Review Committee, and
an HEI Statement. Correspondence concerning this section may be
addressed to Dr Joel Schwartz, Environmental Epidemiology Program, Har-
vard School of Public Health, Landmark Center, Suite 415, 401 Park Drive,
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Although this document was produced with partial funding by the United
States Environmental Protection Agency under Assistance Award
R82811201 to the Health Effects Institute, it has not been subjected to the
Agency’s peer and administrative review and therefore may not necessarily
reflect the views of the Agency, and no official endorsement by it should be
inferred. The contents of this document also have not been reviewed by pri-
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tute; therefore, it may not reflect the views or policies of these parties, and
no endorsement by them should be inferred.
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published results and all of the general conclusions
previously reported held true in these revised analyses.

INTRODUCTION

GAMs (Hastie and Tibshirani 1990) have been applied
in many time-series studies of air pollution and mortality
or morbidity. The wide use of GAMs in epidemiologic
studies of air pollution is due to flexibility in modeling
nonlinear factors such as season and weather (Schwartz
1993, 1994, Katsouyanni et al 2001, Daniels et al 2000).

The gam function is available in the S-Plus statistical
software (Mathsoft, Seattle WA). A recent report from
Dominici and coworkers (2002) indicates that the default
convergence criteria used in the S-Plus function for GAM is
relatively lax and may not guarantee convergence. This is
not a software problem, merely a reminder that investigators
need to pay attention to defaults in statistical software
because the defaults are not always appropriate for each
problem. Independently, Ramsay and colleagues (2003)
reported that the S-Plus gam function uses a shortcut in esti-
mating covariance of the estimated coefficients that does
not properly account for correlation between the exposure
variables of interest and the smoothed functions of covari-
ates. This problem may result in biased estimates of the
standard errors for the pollution variables.

In view of these reports, we have reestimated our
models, allowing for proper convergence and using
methods that provide unbiased standard errors. This
report provides the results of these revised analyses. To
understand the problems, and our attempts to resolve
them, we believe it is appropriate to place the problems in
context and to discuss what options are available to
address the issues.

NONLINEARITY IN EPIDEMIOLOGY

Epidemiologists generally seek to determine whether a
variable is associated with health status. When the vari-
able is continuous, we seek to determine how much does a
health status change at different levels of the covariate
(that is, to estimate the dose-response relation). The two
goals are related: badly misspecifying the dose-response
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relation for a continuous predictor can lead to false infer-
ences about the strength of the association.

Dose-response relations need not be linear. For example,
increased blood-lead levels have little impact on erythro-
cyte protoporphyrin concentration at low doses, but the
impact rises nonlinearly at higher doses. In this example,
toxicokinetic modeling can provide an indication of the
functional form of the relation (Marcus and Schwartz
1987). In most instances, a physiologically based model is
not available and empirical approaches must be used. To
test hypotheses, it is common to see continuous variables
categorized with, for example, high or zero alcohol con-
sumption contrasted with moderate intake.

If the variable suspected of a nonlinear association is not
the hypothesis variable, but a control variable, this mis-
specification of the dose response (it assumes no change
with increasing dose within category) risks allowing
residual confounding.

Piecewise constant fits (that is, indicator variables for cat-
egories) are an example of piecewise polynomial fits (that is,
separate polynomials for each range of the predictor vari-
able). A piecewise linear fit within each category is a natural
extension that tries to capture some of the variability in out-
come with variability in exposure within intervals of expo-
sure. Piecewise linear fits are examples of regression
splines, which include higher order polynomials.

It has long been noted with piecewise constant fits that
the shape of the dose-response curve (created by plotting
the fit) is sensitive to the cut points chosen for the different
categories. This has lead to the widespread use of quartiles
or quintiles to define the cut points (called knots in the
spline context). This categorization removes the choice of
cut point from the discretion of the investigator and pre-
vents misrepresentation, but it does not eliminate the sen-
sitivity. Higher order piecewise polynomials share this
sensitivity to the location (and number) of knot points.
Sensitivity can be reduced by increasing the number of
categories. Using too many categories, however, results in
curves that are too wiggly. This wiggliness also presents a
problem for model building. Using automatic knot point
selection on quantiles means that the location of all knots
changes when one degree of freedom (df) is added to a
model. Consequently, the curves jump about quite a bit. In
addition, changing from an odd to an even number of
knots eliminates the knot at the median. Possible problems
from using this approach are illustrated in Figure 1. Two
estimated dose-response curves between pneumonia
admissions in Detroit and temperature are dramatically
different when 3 df rather than 4 df is used.

In the regression spline field, a common approach to
this problem is to use stepwise regression techniques to
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Figure 1. Detroit. Relation between pneumonia hospital admissions and
temperature using natural spline with 3 df (A) and with 4 df (B).
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choose the location of the knots (the number of knots can
also be addressed this way). To date, such methods have
not been applied to reanalyze air pollution data.

One alternative approach advocated by Eilers and Marx
(1996) is called penalized splines. The analyst chooses a
fairly large number of categories (thereby reducing the sen-
sitivity to knot location) and then constrains the coeffi-
cients within each interval by imposing a penalty for the
wiggliness of the resulting curve. Instead of minimizing
the sum of squares error, or more generally the log likeli-
hood, one minimizes the penalized likelihood. This penal-
ized likelihood is the sum of the usual log likelihood and a
parameter multiplied by the sum of the squares of the
slope changes. Specifically, consider a model of the form:

K
Y; =BO+81X1+Zuk(X1—Kk)++ej
k=1

where K is the number of boundary points (knots) between
intervals of x, K are the locations of those points, and (x;
— K}), is defined as:

X _Kk’Xi > Kk
0,otherwise

So far, this is simply a piecewise linear fit. If we now fit
this using a penalized likelihood, we constrain the uj at
each knot point, effectively reducing the degrees of
freedom of the piecewise fit. This can be done by the fol-
lowing constraint:

ui<cC

M~

k

1

In the Gaussian case, instead of minimizing the sum of
squared errors, we would add a penalty term

NuTDu

where D is a suitably defined design matrix. The extension
to cubic or other splines is immediate.

The larger the parameter \ (called the smoothing param-
eter) that multiplies the penalty term, the smaller the changes
in slope that will minimize this penalized likelihood, and
hence the smoother the curve. The degree of smoothness (and
hence the value of the parameter) can be estimated by using
generalized cross-validation or other methods. One advan-
tage of this approach is that as one increases the degree of
freedom for temperature, the locations of the knots do not
change. Because the number of knots is larger than when
using regression splines with the same degree of freedom,
sensitivity to knot location decreases.

Software to use penalized splines to fit multiple covari-
ates to a health outcome, including logistic and Poisson
regressions, has been developed by Wood (2000) and is
available in R (www.cran.r-project.org/). This software
uses cubic or thin plate splines.

Brumback and coworkers (1999) have pointed out that
this can all be expressed in terms of a mixed model. Because
mixed models are increasingly used for longitudinal data,
geographical data, stratified sampling, and multilevel
models, mixed models offer a unified framework to address
many issues simultaneously. Specifically, if one assumes
that the uy are not fixed, but random effects, then:

u "’N(O,Q)

We have a mixed model with random slopes u;. Because
they are declared random, the mixed model machinery will
constrain the estimates of the uy to vary less than if they
were treated as fixed effects. This constraint reduces the
degrees of freedom, just as the penalized likelihood for-
malism. The amount of shrinkage can be prespecified (“I
want a 3 df curve...”) or by restricted maximum likelihood
(REML). By using REML, one allows the data themselves to
determine the appropriate amount of constraint. The mixed
model programs in most statistical packages will estimate
those random slopes, allowing the user to rely on standard
mixed model theory for model fitting and inference.

One feature of this mixed model formalism is that it
allows more than one covariate to have a nonlinear rela-
tion to the outcome, while also allowing the more usual
mixed model assessment of heterogeneity. Coull and
coworkers (2001) recently used such an approach to show
heterogeneity in response to air pollution in a panel study,
while controlling for a nonlinear dependence on tempera-
ture and season. This approach can be extended to gener-
alized linear mixed models (Ruppert et al 2003), allowing
logistic and Poisson models as well. While, for simplicity,
we have illustrated these approaches for linear splines, the
extension to quadratic or cubic splines is immediate.

Another approach is to use GAM (Hastie and Tibshirani
1990). These models have been applied in many time-
series studies of air pollution and mortality or morbidity.
The wide use of GAM is due to its flexibility in control of
the nonlinear effects of confounding variables such as
trend, seasonality, and weather variables. In most of those
studies, air pollution has been treated as a linear term, and
the nonlinear capabilities of GAM have been used for
covariate control, the focus of this report.

GAM is an extension of generalized linear modeling
(GLM) (McCullagh and Nelder 1989) that allows modeling
of nonlinear effects by using nonparametric smoothing
functions. Nonparametric smoothers can be viewed as
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extensions of moving averages. In moving averages, the
estimated effect Y; at a point X; is taken to be a weighted
average of all of the Y; in a neighborhood about X;. The
neighborhood is called a window, and the weights gener-
ally decline to zero between X; and either edge of the
neighborhood. These are called kernel smoothers, where
the weights are the kernel. The size of the window deter-
mines the degree of smoothing, wider windows producing
smoother curves. The extensions include the use of
weighted regressions, locally weighted smoothing func-
tion (LOESS) instead of weighted averages (Cleveland and
Devlin 1988). Smoothing splines are derived differently,
using penalized likelihood but with a knot at each data
point, unlike the penalized splines.

One important difference between the GAM of Hastie
and Tibshirani and the penalized or regression spline
models is the method of estimating multiple curves. GAM
uses the backfitting algorithm to sequentially smooth
against one covariate at a time, iterating until convergence.
In contrast, regression splines and penalized splines
(using either the ridge regression or the mixed model for-
mulation) estimate all smooth terms in a single step.

The gam function available in S-Plus software was used
in the NMMAPS project to estimate associations between
air pollution and hospital admissions and to estimate the
distributed lag between air pollution and daily deaths. The
GAM was among the first flexible extensions of the GLM
and has been widely used in air pollution epidemiology.

One alternative approach to covariate control is
matching. If we match cases and controls by a covariate (say
season or weather), we do not have to worry about nonlin-
earity in modeling their association with outcome. This can
be done within the context of a case-crossover analysis. The
case-crossover design, introduced to epidemiologists by
Maclure (1991), offers an attractive method to investigate
the acute effects of an exposure. For example, the method
has been used to investigate triggers of myocardial infarc-
tion (Mittleman et al 1993). In recent years, it has been
applied to analysis of the acute effects of environmental
exposures, especially air pollution (Lee and Schwartz 1999;
Neas et al 1999; Sunyer et al 2000; Levy et al 2001). In the
case-crossover approach, a case-control study is conducted
whereby each person who had an event is matched with
herself on a nearby time period during which she did not
have the event. The subject’s characteristics and exposures
at the time of the case event are compared with those of a
control period in which the event did not occur. Each risk
set consists of one individual as that individual crosses over
between different exposure levels in the interval between
the two time periods. These matched pairs may be analyzed
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using conditional logistic regression. Multiple control
periods may be used.

The data are then analyzed as a matched case-control
study. Applied to the association of air pollution with risk
of death, the approach has several advantages. First, it clar-
ifies a key feature of the study of acute response to air pol-
lution. Because in this analysis each subject serves as her
own control, the use of a nearby day as the control period
means that all covariates that change slowly over time
(such as smoking history, age, body mass index, usual diet,
diabetes mellitus) are controlled for by matching.

The case-crossover design controls for seasonal varia-
tion, time trends, and slowly-varying covariates because
the case and control periods in each risk set are separated
by a relatively small time interval. Bateson and Schwartz
(1999, 2001) demonstrated that by choosing control days
close to event days, even very strong confounding of expo-
sure by seasonal patterns could be controlled by design in
the case-control approach. Also, because the analysis is of
matched strata of days for each individual, it is straightfor-
ward to combine events from multiple locations in a single
analysis. The difference in seasonal patterns from city to
city has prevented this approach in multicity studies using
Poisson regression. This makes the approach an attractive
alternative to the Poisson models.

While Bateson and Schwartz (2001) have shown that
the power to detect small effects is lower in the case-cross-
over approach, this is less of a concern in a large multicity
study. Concern has been expressed that the symmetric
bidirectional sampling of controls proposed by Bateson
and Schwartz (1999) violates the study base principal and
does not have a proper likelihood, resulting in some bias
in the estimated coefficients (Navidi and Weinhandl
2002). However, Bateson and Schwartz have shown that
this is equivalent to selection bias. That is, each day does
not contribute equally to cases and controls. For example,
the days before start of the time series can contribute con-
trol exposure, but not case exposure. They showed that
this bias could be estimated and subtracted, and they pro-
vide details in their 2001 paper.

To further address this, we have simulated 5000 time
series, each with several different patterns of confounding
in both outcome and exposure: confounding by

¢ random noise added to both exposure and outcome,
e linear time trend,

* 365-day cosine term,
e combination of a strong linear trend with the cosine
pattern,

e highly structured time series based on a smoothed
function of pneumonia hospital admissions, and
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* actual pattern of particulate matter less than 10 pm in
aerodynamic diameter (PM;,) in Denver, Colorado.

The last pattern was used by Navidi and Weinhandl
(2002) to illustrate the potential for bias in the unadjusted
case-crossover approach using our sampling scheme. The
latter represents a series with considerable structure at
multiple wavelengths. Using the simulations, we present
below the mean of the estimated coefficients (after bias
correction) and the 95% coverage probabilities of those
estimates. The true log relative risk is 0.100 in all cases.
Controls were taken at + 6 and 7 days (Table 1).

As we have demonstrated, the method appears unbiased
with coverage probabilities close to 95%. Hence the stan-
dard errors are also unbiased. We have compared perfor-
mance of the time-stratified sampling scheme of Levy and
colleagues (2001). The two approaches give comparable
results. We replicated the large bias using the naive sym-
metric bidirectional (SBI) control sampling that Navidi
had reported; however, as discussed previously in this
report, that bias was eliminated by our correction proce-
dure. Hence, case-crossover analyses can be applied to
control for season using matching, which avoids the issues
involved in the GAM problems. In principal, we can also
choose controls that are matched on weather as well as

season, thereby controlling both of the realistic con-
founders in air pollution time series. We are doing further
work using that approach.

In this report, we present results of the revised analyses
of NMMAPS morbidity and distributed lag data. In those
analyses, we have at a minimum used stringent conver-
gence criteria in reestimating effects with GAM. In addi-
tion, we have used at least one of the alternative
techniques described previously to refit our models using
the same degree of freedom as the original GAM but with
correct estimation of the standard errors.

DATA

In the NMMAPS study (Samet et al 2000), we evaluated
the association between hospital admissions of persons
aged 65 and older in 14 US cities and PM, for the following
illnesses, as defined by primary discharge diagnosis:

e cardiovascular disease (CVD) (International Classifi-
cation of Diseases, 9th Revision [ICD 9], 390-429),

e pneumonia (ICD 9, 480—487), and

e chronic obstructive pulmonary disease (COPD) (ICD 9,
490—492, and 494—496).

Table 1. Results of Symmetric Bidirectional Case-Crossover Analyses of Simulated Time-Series Data in Presence of Time-
Varying Confounding With and Without Adjustment for Selection Bias®

Patterns in Simulated Data Naive Results

Results Adjusted for

Selection Bias Time-Stratified Results

95%
Coverage
Coefficient Probability®

Time Trend Mean

in Outcome

Time Trend
in Exposureb

95%
Mean Coverage
Coefficient Probability®

95%
Mean Coverage
Coefficient Probability®

Random? Random? 0.10043 93.68
Linear® Linear® 0.09908 93.36
cosif cosif 0.10009 93.82
COS1xLinear® COS1xLinear8 0.09969 94.08
Pneumonia Pneumonia 0.10044 94.44
Denver PM;, COS1xLinear®  0.15964 77.6

0.10018 94.66 0.0995 94.84
0.09933 94.74 0.0996 94.80
0.10124 94.92 0.1033 94.52
0.10122 95.28 0.1084 94.48
0.10006 95.18 0.1019 95.10
0.10041 94.32 0.0915 94.92

2 The simulated In(RR) was 0.1000. Results are based on 5000 iterations.

b The Confounding Time Trend was used to generate the exposure data as well being used to simulate an omitted covariate that affected the daily event

occurrence.

¢ Coverage probabilities are the percentage of 95% confidence intervals that contain the true effect.

d Random means identical random Gaussian noise was added to both exposure and outcome.

¢ Linear refers to linear time trend in both exposure and outcome with an amplitude of 60% of the mean number of events, and a frequency of 1 cycle per
year. This is very large seasonal cycle compared to most mortality or morbidity data.

fCOS1 refers to cosine term in both exposure and outcome with an amplitude of 60% of the mean number of events, and a frequency of 1 cycle per year.
This is a very large seasonal cycle compared to most morbidity and mortality data.

8 COS1xLinear refers to a combination of the linear time trend times the seasonal cosine trend.
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For a detailed description of the health data, refer to the
NMMAPS report pages 28 to 47 (Samet et al 2000). In the
same report, we also examined the distributed lag
between PM;, exposure and daily deaths in 10 US cities
with daily PM;, measurements. That analysis is more
fully described in Appendix B of the original NMMAPS
report (Samet et al 2000).

METHODS

GAM WITH STRICTER CONVERGENCE CRITERIA

To address the sensitivity of the effect estimates to the
choice of convergence criteria and maximum iterations
(for the main and backfitting steps) in GAM, we adopted
the strategy of refitting exactly the model originally
reported, changing only the convergence criteria. This was
done by rerunning the original script files. The details of
the original models for each outcome and each city are
given in the original NMMAPS report (Samet et al 2000) in
Appendix D, Tables D.2 through D.4. The stricter conver-
gence criteria were the ones recommended by Dominici
and coworkers (2002): maxit = 1000, bf. maxit =
1000; epsilon = 10e-15, bf. epsil on = 10e- 15.

Use of the stricter criteria addresses the possibility that
models may not have converged in the original analyses but
not the issue of standard error estimation. This second issue
is much more of a problem for single-city studies than for
multicity studies such as NMMAPS or Air Pollution and
Health: A European Approach (APHEA). In the latter
studies, investigators do not simply rely on the estimated
variance of regression coefficients for air pollution in a
single city. Rather, they have the empirical distribution of
coefficients for air pollution across multiple cities. If the
within-city estimates of variance are too small, the observed
variation in results between cities will be larger than
expected from the within-city variances. This results in the
use of a random variance component to estimate the differ-
ence between the within-city and between-city estimates of
variance of the coefficient. The standard error of the com-
bined analysis is determined by the overall variance of the
coefficients. Hence, underestimating the variance of coeffi-
cients within individual cities would not be expected to
have much effect on variance of the overall mean estimate.
We report empirical results here to confirm this point.

ALTERNATIVES TO GAM

To address the question of sensitivity to incorrect esti-
mation of standard errors within city is more difficult.
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There is no conceptual difficulty in fixing the problem for
the GAM software, and a fix is expected to be available
shortly. In the interim, any change necessarily must change
not only the way standard errors are estimated, but also how
to control for season and weather. Hence, effect estimates
will change as well as confidence intervals (Cls). Because of
time limitations, we have not been able to repeat all anal-
yses all ways. We have repeated all of our analyses using
GAM, with the stricter convergence criteria, using penal-
ized spline and natural spline models with the same degrees
of freedom. Because we did not need a mixed model for any
part of our analysis, we used the generalized additive penal-
ized spline program in R, which is more straightforward to
implement. We used thin plate splines as the basis func-
tions for regression splines in the penalized spline model.
For the natural spline models, noninteger degrees of
freedom were rounded to the nearest whole number. Auto-
correlation of the residuals of the new models was still so-
called white noise. For some cities, autoregressive terms
were added as in our original models.

We have also applied the case-crossover approach to
some mortality data to illustrate the technique. All of the
results are reported below in summary, with more details
in the appendices.

CHANGE OF METHOD TO COMBINE RESULTS
ACROSS CITIES

In our original report of these results, we used the
method of moments to estimate the random city effect (that
is, the measure of heterogeneity). This is an approximate
method. Since then, we have used iterative maximum like-
lihood estimation of the random city effect variance, using
the method of Berkey and coworkers (1998). We have used
this more accurate method to combine the results across
cities and to obtain the x? statistic for the heterogeneity
test. A description of this method follows.

To combine the coefficients across cities, we used the
city-specific estimates and the variance-covariance matrix
of the parameter vector. This was achieved by fitting a
metaregression model based on the method described by
Berkey and colleagues (1998). More specifically, models
for metaregression are of the form:

B =X a+3°+¢€°

where 3¢ is the (14 X 1) vector of estimates in each city; X°
is the identity matrix plus any factors that predict the het-
erogeneity across cities; a is the vector of regression coeffi-
cients to be estimated; 8¢ is a vector of random effects
associated with city ¢ and €° (assumed independent from
°) is the vector of sampling errors within each city.
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The matrix cov(3°) = D (needed to be estimated) repre-
sents the between-cities covariances of regression coeffi-
cients that is unexplained by the sampling errors.

It is assumed that:

3¢ ~N(0,D)
e ~N(0,S°

B° ~ N(X ‘e, D+S°)

where S€ is the estimated variance-covariance matrix in city
c. When D =0, we get the corresponding fixed effects esti-
mates, but when D # 0, we get the random-effects estimates.

The method described by Berkey and colleagues (1998)
is applied to estimate the model parameters. More specifi-
cally, the iterative generalized least squares method was
applied to estimate model parameters. That is,

& = (ZXCTV c’ixc‘]—l(ZXCTVc’IBC) with

Var(@ = (Y, X' ve'x9)™"
c

where V¢ = S for the fixed effects estimates and V¢ = S°+D
for the random effects estimates. The parameters of the
between-cities covariance matrix D are estimated by max-
imum likelihood (Berkey et al 1995). The overall test for
heterogeneity is

Q=@ -xa0"Vmr @ -xa’

and under the null hypothesis of homogeneity (D = 0) fol-
lows the x? distribution with degrees of freedom equal to
the number of cities minus the number of covariates (1 in
our case), which gives us a total of 13 df. Because of the
limited power of this test, the results we report are all from
random effects metaanalyses, regardless of whether there
was significant heterogeneity.

RESULTS

MAIN RESULTS COMPARING ANALYTIC METHODS

We here include the results of various reanalyzes we
presented originally in the NMMAPS report. In the main

body of this report, we show summary results across all
cities; city-specific analyses are included in Appendix A.

Hospital Admissions

Table 2 shows the combined mean estimates for con-
strained lag (one-day mean, two-day mean, quadratic dis-
tributed lag) and unconstrained distributed lag models for
the percentage change in hospital admissions for a 10-
ng/m? increase in PM;,. These results are for the original
GAM the GAM with stricter convergence criteria, and the
natural spline models. Table 2 corresponds to Table 14 in
the original report. In Table 2, we present the combined
results from the random effect estimates, while in Table 14
of the original report fixed effect estimates are reported
(Samet et al 2000, p 37).

The differences between the combined estimates for the
two-day mean of PM; (obtained with GAM with original
and stricter criteria) were: reductions of 7.6% for hospital
admissions for CVD, 8.9% for COPD hospital admissions,
and 9.6% for pneumonia hospital admissions. These dif-
ferences are all smaller than the corresponding drop of
34% observed in the NMMAPS mortality analysis for 90
cities. (Percentages were computed as a percentage change
in the regression coefficients from the combined analysis.)
This difference is likely due to the greater degrees of
freedom included in the models applied to analyze mor-
tality data, which would have led to the original mortality
estimates being further from convergence than those
obtained with our models with fewer degrees of freedom
applied to analyze the morbidity data. The results using
natural splines were decreased by 11.2% for CVD admis-
sions, by 28.5% for COPD admissions, and by 70% for
pneumonia admissions compared to the original results.
For comparison, the NMMAPS mortality effect estimates
dropped by 48.8% between the original GAM fits and the
natural spline fits. Thus, with the exception of pneumonia
and natural splines, the reduction in effect sizes was gen-
erally smaller for the NMMAPS morbidity analyses.

For distributed lag models, we found that for CVD the
estimates with the stricter convergence criteria increased by
4% and 5% (respectively for quadratic and unconstrained
distributed lag) and that, using natural spline, they
increased by 1% and 5%. The latter results are interesting
because Le Tertre and colleagues have also reported that a
modest increase in effect estimates for CVD hospital admis-
sions in the APHEA study when natural spline models were
applied (Le Tertre et al, elsewhere in this Special Report).

For COPD, the GAM fits with stricter convergence cri-
teria resulted in reductions of 14% and 12%, respectively,
while the reductions using natural splines were 28% and
26%. The reductions in distributed lag models for COPD
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Table 2. Percentage of Change in Hospital Admission for Specific Diagnoses per 10 ng/m?® Increase in PM; in 14 Cities

CVD COPD Pneumonia
% % %
Change 95% CI Change 95% CI Change 95% CI
Original GAM with LOESS—Random Effect®
Constrained lag models
One-day mean 1.02 0.69, 1.35 1.42 0.35, 2.51 1.62 1.05, 2.18
Previous-day mean 0.68 0.54, 0.81 1.18 —-0.32, 2.70 1.31 1.03, 1.58
Two-day mean 1.17 1.01, 1.33 1.81 1.16, 2.47 1.90 1.44, 2.37
PM4 <50 ug/m3 (two-day mean) 1.45 1.12,1.78 2.60 1.40, 3.81 2.46 1.16, 3.78
Quadratic distributed lag 1.05 0.67, 1.43 2.94 0.21, 5.74 1.87 0.72, 3.04
Unconstrained distributed lag 1.06 0.67, 1.46 2.88 0.22,5.61 2.07 0.93, 3.23
GAM with LOESS and Stricter Convergence Criteria®
Constrained lag models
Two-day mean 0.99 0.79, 1.19 1.71 0.95, 2.48 1.71 1.16, 2.26
Quadratic distributed lag 1.09 0.81, 1.38 2.53 1.20, 3.88 1.47 0.86, 2.09
Unconstrained distributed lag 1.12 0.84, 1.40 2.53 1.21, 3.87 1.62 0.95, 2.29
Natural Spline Model®
Constrained lag models
One-day mean 1.01 0.76, 1.26 1.09 0.48, 1.70 0.78 0.45, 1.11
Previous-day mean 0.52 0.29, 0.76 0.99 0.25, 1.73 0.22 —0.45, 0.40
Two-day mean 0.96 0.71, 1.20 1.32 0.56, 2.08 0.57 0.04, 1.10
PM4 <50 ug/m3 (two-day mean) 1.32 0.77, 1.87 2.21 1.02, 3.41 1.06 0.06, 2.07
Quadratic distributed lag 1.11 0.79, 1.44 2.11 0.63, 3.61 0.01 —0.64, 0.67
Unconstrained distributed lag 1.06 0.72, 1.40 2.10 0.63, 3.59 —0.02 —0.65, 0.61

2 Methods of moments.

b Gombined effect estimates obtained using maximum likelihood estimation.

were quite similar to those for the 2-day mean PM,,. For
pneumonia, we observed a reduction of 21% and 22%
when using the stricter convergence criteria, while the
results for distributed lag models using natural spline
became null. This result deserves some discussion.

Pneumonia is the outcome measure in our study that
shows the greatest seasonality. Pneumonia cases peak in the
winter, but in many of the cities important PM;, peaks
occur in the summer. Hence, control of season is critical.
Notably, when our analysis was restricted to days with
PM,, below 50 ng/m?, which included most days but
omitted the high-PM summer days, PM;, was significantly
associated with daily pneumonia admissions in the natural
spline analysis. While the effect size was halved for pneu-
monia, it barely changed for CVD and COPD admissions
compared to the old results. These results suggest that the
pneumonia effect estimates were sensitive to peaks in expo-
sure during a season when pneumonia is rare. Interestingly,
for pneumonia there was evidence of confounding by other
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pollutants; control for ozone, another summer peaking pol-
lutant, increased the effect of PM,.

To further examine this issue, we fit a model for Pitts-
burgh (one of the cities where the effect estimates became
negative) using a natural spline of PM;, (mean of lag 0 and
lag 1). Figure 2 shows the results of that model. At low to
moderate PM; 4 values, hospital admissions for pneumonia
increased with increasing concentrations, but they then
fell sharply when PM,, levels were above 30 pg/m?. The
highest days were concentrated in July and August. This
finding suggests that further examination of pneumonia
admissions restricted to the winter season, when the bulk
of them occur, may be of interest. Time constraints have
prevented us from doing so to date.

Table 3 shows the summary results of repeating analyses
for the three outcomes using penalized splines in R. City-
specific results are presented in Appendix A. The results
using penalized smoothing splines were intermediate
between the GAM and natural spline results. In particular,
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Figure 2. Pittsburgh. Relation between pneumonia hospital admissions
and PM, at mean lag 0/1 using natural spline with 5 df. At low to mod-
erate PM; values, hospital admissions for pneumonia are shown to
increase with increasing concentrations but then to fall sharply when
PM, levels are above 30 pg/m®.

using penalized splines, a significant effect continued for
pneumonia using a distributed lag model. We believe this
warrants further study. Given that GAM, penalized
splines, and regression splines gave similar results for
CVD and COPD, but that regression splines produced dra-
matically different results for pneumonia admissions, we
believe that the natural spline model may be less stable,
possibly because of the sensitivity to knot location that
penalized splines are designed to remove. We also note
that Dominici and colleagues (2002) observed greater noise
in the estimates from natural splines than from GAMs as
they varied the degree of freedom in their models. The
penalized spline approach may offer a good compromise
between regression and smoothing splines by giving
appropriate standard errors and avoiding backfitting,
while preserving the greater flexibility of smoothing.
Table 4 shows the test for heterogeneity for models using
natural splines. These results are similar to those pre-
sented previously (Samet et al 2000, Table 15, p 38). x sta-

Table 3. Percentage of Change in Hospital Admission for CVD, COPD, and Pneumonia per 10 pg/m?® Increase in PM; in

14 Cities?®
Two-Day Mean Quadratic Distributed Lag Unconstrained Distributed Lag

% Change 95% CI % Change 95% CI % Change 95% CI
CVD 1.00 0.80, 1.19 1.09 0.81, 1.37 1.12 0.83, 1.41
COPD 1.56 0.86, 2.28 2.39 1.13, 3.67 2.54 1.20, 3.89
Pneumonia 1.23 0.49, 1.98 0.64 0.03, 1.25 0.80 0.14, 1.46
8 Penalized spline model. Combined effect using maximum likelihood estimation.
Table 4. Heterogeneity Test for City-Specific Estimates for Specific Diagnoses?

Quadratic Unrestricted ~ PM;, Lag 0/1
PM;, Lag 0 PM;, Lag 1 PM,o Lag 0/1 Distributed Lag Distributed Lag (<50 pg/m?®)

CVvD
Heterogeneity xz 23.21 23.1 21.04 18.9 17.78 30.49
df 13 13 13 13 13 13
P value 0.04 0.04 0.07 0.13 0.17 0
COPD
Heterogeneity XZ 16.19 23.11 20.31 32.29 32.47 16.07
df 13 13 13 13 13 13
P value 0.24 0.04 0.09 0 0 0.25
Pneumonia
Heterogeneity XZ 11.17 18.49 24.02 17.66 18.39 22.97
df 13 13 13 13 13 13
Pvalue 0.6 0.14 0.03 0.17 0.14 0.04

 Natural spline model.
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tistics, degree of freedom, and P values from the iterative
maximum likelihood estimation of the random city effect
variance program were used to obtain our combined-effect
estimates. We do not present the decomposition among
total, within, and random variance, but this can be calcu-
lated from the presented results.

Mortality

The original NMMAPS report contained our analysis of
10 US cities with daily PM;, monitoring to explore the dis-
tributed lag between air pollution and daily deaths (Samet
et al 2000). We have similarly repeated these analyses
using the stricter convergence criteria, penalized splines,
and natural splines. Table 5 shows the estimated overall
effect of PM; looking at lags out to 5 days. The effect size
estimates are reduced compared to the original report
(Samet et al 2000 Appendix B, pp 54-61, and Table B.3, p
59). Once again, however, these estimates are noticeably
larger than those obtained using single-day exposures,
indicating that effects of a given concentration of PM;, on
one day occur both on that same day and for several days
afterward. This observation has been confirmed in many
other studies. In this instance, the penalized spline results
differed little from the natural spline results.

We also used the case-crossover analysis with these 10
cities (Appendix B of this report). Matched strata con-
structed for each subject consisted of the event day (day of
death) and 18 matched control days. These days were
chosen to be days 7 to 15 before the event day and days 7 to
15 after the event day. We chose control days far from the
event day to avoid serial correlation in the pollution and
mortality data. Control days were symmetrically chosen
about the event day because Bateson and Schwartz (1999)
demonstrated that symmetric control days were needed to
control for long-term time trends (if present). Navidi
(1998) pointed out that bidirectional sampling is needed to
avoid some biases in the case-control study and does not
present any conceptual difficulties as long as death of the
subject does not affect the air pollution concentrations.
Regression splines were used to control for temperature
and humidity on the day of death and the day before death.
We used the bias correction procedure of Bateson and
Schwartz (2001), which performs well with respect both to
bias and coverage probabilities. For ease of comparison
with the main NMMAPS mortality analysis, we used PM;
concentrations the day before death and the day before
each of the control days as the exposure index. These
results are shown in Table B.3.

It is interesting to compare these results with the
NMMAPS results for mortality in 90 cities. Rather than try
to find the optimal degree of freedom per year for seasonal
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Table 5. Daily Deaths in 10 US Cities: Percentage of
Change per 10 pg/m? Increase in PM;

% Change 95% CI
Original GAM Results
Quadratic distributed lag 1.4% 1.2,1.7
Unconstrained distributed lag 1.3% 1.0, 1.5
GAM with Stricter Convergence Criteria
Quadratic distributed lag 1.2% 0.9,1.5
Unconstrained distributed lag 1.1% 0.8,1.4
Natural Spline Model
Quadratic distributed lag 1.0% 0.6, 1.4
Unconstrained distributed lag 1.0% 0.7,1.3
Penalized Spline Model
Quadratic distributed lag 1.0% 0.8,1.3
Unconstrained distributed lag 1.0% 0.8,1.3

control, the NMMAPS mortality study presented results
using a range of values. This is still true in the reanalyses
using natural splines. The magnitude of association using
case crossover is larger than that in NMMAPS natural
spline models for 90 cities, which use 7 df/year to control
for season (0.35% vs 0.21%). This larger association could
be due to sampling variability, to the choice of cities
studied, or to the difference in methods. If it is due to the
latter, the question is most likely degree of freedom rather
than use of natural splines per se because any sensitivity to
knot location should average out in a large multicity study,
such as NMMAPS. Most other studies of air pollution and
daily deaths have used 3 to 4 df/year (Goldberg et al 2001;
Katsouyanni et al 2001). The midpoint of this range
(3.5 dff/year) is one of the choices used in the NMMAPS
study, and results of that analysis are almost identical to
results of the case-crossover analysis.

Simulation studies previously conducted (Bateson and
Schwartz 1999, 2001) and those noted earlier in this report
have demonstrated that the control sampling strategy used
in this analysis is adequate to control for strong seasonal
confounding. Thus it follows that fewer degrees of
freedom may be more appropriate for spline models.

There is really no correct choice for how to control for
season and weather. This ill-posed problem cannot be
answered from the data alone. Fortunately, we have addi-
tional information on which to rely. The reason we control
for season is that we believe covariates have been omitted
that will be accidentally correlated with air pollution varia-
tions over long timescales but which are unlikely to be cor-
related over short timescales. For example, both air
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pollution and smoking rates have fallen over time. Failure
to control for time trends could therefore result in con-
founding. We think it unlikely that this would explain one-
week excursions in mortality rates that occur coincidentally
with an air pollution episode. Similarly, many risk factors
vary by season, as does air pollution. Hence we use smooth
functions of time to filter out fluctuations with periods
greater than a certain timescale. We cannot ask the data to
tell us the appropriate choice. What we can do is look at the
fitted curves, see what timescales they are removing, and
choose degrees of freedom that are consistent with our intu-
ition (and data) about the likelihood of confounding.

Examination of the partial autocorrelation function of the
residuals is also helpful. The impact of omitted covariates is
in the residuals of the model. If those covariates have no
pattern of fluctuation over time, they are unlikely to corre-
late with air pollution unless one can identify a physical
connection between them and air pollution. Hence, the
presence of serial correlation in the residuals indicated the
potential for confounding. Reducing the residuals to white
noise is therefore a good thing, but it cannot guarantee
freedom from confounding. An omitted confounder may
have too small an effect on mortality to significantly affect
the residuals but still confound air pollution.

Fortunately, the obvious confounders of air pollution
are related to weather, and they are available and mea-
sured in our studies. Smoking and dietary habits are
unlikely to covary with air pollution on timescales briefer
than seasons, and we can bring this information to our
model choice. Similarly, we believe extremely cold or hot
temperatures are bad for health. It is physiologically not
meaningful, however, to postulate that the risk of death
will, for example, rise from 60 to 63°F, fall from 63 to 67°F,
and then resume rising. Temperature effects may be non-
linear, but they should be quite smooth. This can also
guide our modeling efforts.

The problems associated with overcontrol of season can
be seen by looking at two examples. Of course, one may
wonder whether there can be any bias from overcontrol.
Normally, one would expect increases in standard errors,
and noisy estimates in individual cities, but no bias. Time-
series analysis is somewhat different, however. The effects
of exposure to an environmental variable (pollution or
weather) are usually distributed over time. Because pollu-
tion and weather are serially correlated, the use of a single
day’s exposure (as in the 90 cities of NMMAPS) or the
mean of 2 days’ exposure (as in APHEA, Katsouyanni et al
2001) captures not merely the effect of exposure on that
time scale, but part of the effect that is manifested with
longer lags. In this sense, the estimate is confounded,
reflecting an overestimate of the effect of exposure on one

day, for example, but an underestimate of the cumulative
effect. Increased filtering of the time series will eliminate
this bias and give one the instantaneous effect of exposure.
This is why in classical time series, where the lag pattern
has important policy implications (eg, the lag between
interest rate cuts and increases in gross domestic product),
prewhitening is used. The effect over time is examined
using distributed lag models.

The main public policy question this study evaluates is
the magnitude of short-term effects of air pollution on mor-
tality. As noted, the estimated effect of exposure after one
day can be an overestimate of the effect with that lag but an
underestimate of the overall. Increased filtering of the time
series beyond that which is necessary to control for season
can lead to further underestimates. Moreover, because the
filtering can remove patterns from exposure and outcome
on timescales where the distributed lag is still estimating,
bias can occur even when using a distributed lag model.

To illustrate this, one of us (JS) performed a simulation,
using the PM,, data from Chicago from 1988 to 1993 (to
reflect the true serial correlation found in such data) and
assuming a true distributed lag between exposure and the
log relative risk of death (Figure 3). A Poisson count was
simulated for the 6 years of data, 200 times. Figure 4 shows
the estimated log relative risk versus degree of freedom per
year used to model season (smoothing splines). The two
horizontal lines show the true cumulative effect and true
effect of lag 0 exposure. The estimated effect at one day
falls as progressively more filtering removes the ability of
that day’s exposure to capture some of the cumulative
effect over many days. It appears to asymptote out at
7 df/year. This is similar to the reduction in effect size
reported by Dominici and colleagues (2002) with an
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Figure 3. Chicago (1988-1993). Postulated distributed lag for PM,,.
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Figure 4. Seasonal control when air pollution effect is spread over mul-
tiple days.

increasing degree of freedom, which also asymptoted out
at about 7 df/year. Hence, that reduction could be
explained by reduced confounding by unknown factors or,
equally well, by reduced ability to capture the effect of pol-
lution over multiple days. Interestingly, even when an
unconstrained distributed lag is fit and summed to pro-
duce an overall effect, there is still a reduction in the esti-
mate. That is, there is bias if a true distributed lag exists.

While one cannot determine from the data alone whether
we are reducing true PM effect estimates or removing
confounding, it is important to conceptualize what could
result in subseasonal patterns correlated with both
exposure and outcome. One hypothesized additional
confounder that can produce shorter-term excursions in
mortality is a respiratory epidemic. Nevertheless, while
respiratory epidemics occur in the winter, the timing of
when they occur has more to do with how they spread
across the world. It seems unlikely that their actual
occurrence within a winter is correlated with air pollution.
This is a testable hypothesis. Braga and coworkers (2001)
examined hospital admissions for pneumonia in multiple
cities and used excursions of five-day moving averages of
admissions to define epidemic periods. For each day in
each epidemic period, they fit a separate 6-degree
polynomial to model the impact of the epidemic on
mortality. That is, if an epidemic lasted for 17 days, there
would be a variable that was zero until the beginning of the
epidemic, 1 to 17 for the days of the epidemic, and 17 for
all subsequent days. The effect of the epidemic during this
period was modeled by a 6-degree polynomial. Separate
polynomials were fit for each epidemic similarly. The
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epidemics varied in number and intensity from year to
year and in intensity from epidemic to epidemic.

After control for all of the epidemic periods by separate
6-degree polynomials, the estimated effect of PM;, was
unchanged. This lack of change suggests that the most
common reason for wanting to fit short-term excursions of
mortality is not necessary. Similarly, we previously
repeated multiple analyses excluding all days above the
97th percentile of temperature and found no change in
PM, coefficients. Therefore, heat waves, which may not
be captured by the weather parameters, also seem unlikely
as confounders.

On the other hand, fitting more than 3.5 df/year allows
one to control for many excursions that are clearly not sea-
sonal and may result in lower estimates of the cumulative
effect of environmental variables. This is illustrated in sev-
eral figures here. Figure 5 shows the results of fitting a
7 df/year spline model to explain seasonality for daily
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Figure 5. Chicago (1993-1997). Predicted daily deaths over time. A. Sea-
sonal model fit using natural spline with 7 df/year. The plot shows a peak
of mortality in the summer of 1995, in the middle of the usual summer
trough. B. Seasonal model fit using natural spline with 4 df/year. The peak
of mortality in the summer of 1995 (shown in plot A) is explained here by
temperature.
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deaths in Chicago during the years 1993 to 1997. In the
summer of 1995, a serious (and widely studied) heat wave
in Chicago was responsible for an estimated 400 early
deaths over a 6-day period. Figure 5A shows the predicted
daily deaths over time from the seasonal model fit to the
data. One can see that the 7 df/year seasonal model is fit-
ting a peak of mortality in the summer of that year, in the
middle of the usual summer trough. That is, 7 df/year is
sufficient to start picking up not merely season but also
short-term (less than a week) changes in other environ-
mental variables. This is despite including a 6-df spline for
the three weeks around the heat wave itself to capture the
effects of the heat wave.

One may argue that the problem is that the heat wave
has not been correctly modeled and that the correct attri-
bution would occur if the correct terms and interactions
were used. However, the true model is never available. A
standard method of attributing deaths to heat waves is to
count the excess over the seasonally expected deaths
during the heat wave. Clearly, this peak in the summer
months attributed to season will reduce the number of
excess deaths that can be attributed to the coincident heat
wave by that method. The estimated effect of air pollution
episodes, such as the London episode of 1952, was simi-
larly computed. Also, if we were somehow able to obtain
the correct model for air pollution episodes, weather epi-
sodes, and respiratory epidemic episodes, how would we
expect the smooth function of time to look? We would
expect a basic seasonal pattern, varying in amplitude and
phase from year to year, with some shape fluctuations, but
not small blips. This is precisely what we get if we use 3 to
4 df/year. Because heat waves and epidemics do not
appear to be confounders of air pollution, this seems like
the appropriate goal for seasonal control. If we want to
obtain a good estimate of the effects of short-term fluctua-
tions in environmental variables (weather or pollution),
we need to use fewer degrees of freedom for season. This is
illustrated in Figure 5B, showing the same Chicago data,
now fit with 4 df/year. In that model, the heat wave is left
to be explained by temperature or a heat wave term or by
counting excess deaths during the period. That is, imper-
fect methods of modeling air pollution and weather do
better when we do not overattribute short-term fluctua-
tions to season.

Figure 6A shows the predicted daily deaths versus time
from Houston for the years 1986 to 1993 using a 7-df
spline. This model also included splines of temperature,
humidity, and indicator variables for day of the week. In

addition to picking up a heat wave in one summer, we see
also a short-term blip in the spring of 1986. This short-term
excursion of mortality is not seasonality. Whether it is due
to weather or to air pollution is not clear. If we want to
learn whether short-term excursions in air pollution may
be associated with short-term (but not instantaneous)
excursions in daily deaths, however, we should not
attribute such events to season. Figure 6B shows the pre-
dicted daily deaths in Houston using a 4-df spline, which
eliminates the heat wave and the spring excursion from
being attributed to season. Finally, Figure 7 shows the par-
tial autocorrelation function for Houston for the original
series of daily deaths, for the residuals of the model using
4 dflyear, and for the residuals of the model using 7 df/year.
One can see that the daily deaths have positive autocorrela-
tion (Figure 7A), that control for season reduced to white
noise when 4 df/year are used (Figure 7B), and that the use
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Figure 6. Houston (1986-1993). Predicted daily deaths versus time using
7-df (A) and 4-df (B) splines. The model also included splines of tempera-
ture, humidity, and indicator variables for day of the week. The 7-df spline
shows a heat wave in one summer and a very short-term blip in the spring
of 1986. The 4-df spline eliminates the heat wave and the spring excursion
(shown in Figure 4 plot A) from being attributed to season.

37



Morbidity and Mortality Among Elderly Residents

A. Daily Deaths in Houston
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Figure 7. Houston (1986-1993). Partial autocorrelation function. A. The ori-
ginal series of daily deaths present a positive autocorrelation; B, the model
using 4 df/year presents residuals reduced to white noise; and C, the model
using 7 dff/year shows a negative autocorrelation.

of 7 df/year induces negative autocorrelation into the data
(Figure 7C). This phenomenon is well known in the digital
filtering literature, and its occurrence when overfitting time
series of health data has been discussed by Diggle (1990).
Because air pollution has positive autocorrelation, this
phenomenon has the potential to downwardly bias the
results for air pollution.

Similarly, we can examine models using different degrees
of freedom for temperature to determine reasonable choices.
Figure 8 shows the estimated dose-response curves for the
effect of today’s and yesterday’s temperatures on daily
deaths in Steubenville Ohio, when using 6 df for each curve.
These curves are clearly biologically implausible. Indeed,
physiologically, we would expect nonlinear but quite
smooth curves for temperature. This suggests that 2- or 3-df
curves are, a priori, more reasonable.
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Figure 8. Steubenville, Ohio. The 6 df fit for today’s temperature (A) to
daily deaths and for yesterday’s temperature (B) to daily deaths.

In summary, large degrees of freedom per year are
unnecessary to control for season per se, demonstrably fit
short-term excursions that may be due to environmental
variables, and seem unnecessary to control for respiratory
epidemics. On the other hand, given that the effects of air
pollution and weather are spread over multiple days, this
approach has the potential to downwardly bias the esti-
mated effects of pollution and weather. While controlling
for weather is important in air pollution time series, fits
with high degrees of freedom produce physiologically
implausible curves and may capture the effects of corre-
lated pollution variables. Reason and judgment are needed
to define the range of reasonable models to explore.

OTHER ISSUES RELATED TO RESULTS

Choice of Spline

Natural splines are b-splines constrained to be linear at
the extreme ranges of the data. Because temperature may
have very nonlinear effects at the extremes of its range, we
refit all of our models using b-splines instead of n-splines.
While estimates varied slightly from city to city, the impact
on the metaanalysis of overall effect was trivial. Hence, this
does not appear to be a sensitivity of the model.
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Standard Errors in Multicity Studies

The estimated standard errors using natural splines were
only modestly higher than those with the stricter conver-
gence criteria for GAM. Changes in standard errors for indi-
vidual cities do not necessarily have much impact on the
standard error of the estimated overall effect in a metaanal-
ysis, because that variance includes city-to-city differences
as well as the within-city variances. Indeed, if we compare
the standard errors for the estimated overall effect from cor-
rected GAMs to natural spline models, we find 0.00010
versus 0.00012 for CVD admissions, 0.00039 versus 0.00038
for COPD admissions, and 0.00028 versus 0.00028 for pneu-
monia admissions. That is, the results are identical in one
instance, higher in another, and lower in the third. A similar
result occurred in the reanalysis of NMMAPS mortality
study by Dominici and coworkers (elsewhere in this Special
Report). The standard error of the estimate is 0.06 with GAM
or natural splines. Hence, we believe that in studies such as
NMMAPS and APHEA, where there are systematic prospec-
tive metaanalyses of many locations, the standard error issue
for GAM is unlikely to matter for the combined estimates. If
we take into account findings from all studies on the health
effects of air pollution, the effect of the standard error
problem on overall inference is nil.

The major difference between natural splines and LOESS,
then, is not on the standard error of the combined mean esti-
mate across cities (although that is true for individual
cities/studies). The major difference is that natural splines fit
season and weather differently than does LOESS. This dif-
ference in model fit changes the estimate of the mean effect,
but not its variance. In NMMAPS, for estimate of effect on
mortality across 90 cities, this change was not trivial
although all of the major conclusions still held (Dominici et
al, in this report). For hospital admissions, the change was
modest for CVD and COPD but large for pneumonia.

Sensitivity to Knot Locations and Number

Because the natural splines we used are less flexible, we
examined the predicted seasonal and weather patterns for
our original models and for the new models in order to
identify instances in which they did not seem to similarly
fit these patterns.

While parametric approaches like the natural spline
have the advantage of no backfitting algorithm or inappro-
priate estimation of the covariance matrix, the disadvan-
tage of such an approach is that it is less flexible. While by
and large the predicted curves versus season and weather
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Figure 9. Chicago (September 1989-March 1990). Pneumonia admis-
sions. A. Predicted subset plots versus season from the original GAM
shows a seasonal pattern with two peaks. B. Predicted subset plots
versus season from the natural spline model (same degree of freedom as
in the GAM) shows only one peak.

were similar, for the smooth function and the splines that
was not always the case. For example, Figure 9 shows the
predicted plots versus season for pneumonia in Chicago
for 200 days in the end of 1989 and beginning of 1990. One
plot is from GAM and one uses natural splines with the
same degree of freedom. The two models clearly fit dif-
ferent patterns. The plot in Figure 9A shows a seasonal
pattern with two peaks; the plot in Figure 9B shows only
one peak. Next Figure 10 shows the deviance residuals
from the two models. The plot in Figure 10A shows no sea-
sonality left in the data; the plot in Figure 10B shows the
presence of seasonality in the data. The GAM clearly
seems to fit the data better in this case.
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A. Original GAM
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Figure 10. Chicago (September 1989-March 1990). Pneumonia admis-
sions. A. Residuals from a subset of the original GAM shows no season-
ality left in the data. B. Residuals from the natural spline model with the
same degree of freedom as in A. This plot shows the presence of season-
ality in the data.

Another example, given in Figure 1, shows the plots of
dose response for temperature in Detroit and pneumonia
using 3 and 4 df. Increasing the degree of freedom from 3 to
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4 completely changed the pattern for temperature. This
change in pattern may be due to a different location of the
knots over the temperature range.

Effect Modification

Social Factors Table 6 shows the change from baseline
PM,;, effect (as percentage change in admissions per
10 ug/m3 increase in concentration) associated with a
5-point increase in each measure for models with natural
spline and with penalized spline.

For COPD and pneumonia, none of the analyzed factors
were significant modifiers of the PM, effect estimates in
the 14 cities. For CVD, we found that the percentage of the
population living in poverty, the percentage of the popula-
tion that was nonwhite, and the percentage that was unem-
ployed were modifiers of hospitalizations for CVD. The
finding holds for both types of models, even though the
results are stronger with natural spline models. The effect
of PM,, was greater in communities with higher levels of
these indicators. This finding differs from our previous
results, where they were not significant modifiers, and
suggests that social deprivation may convey susceptibility
to the effects of particles. This effect could be exerted
through increased exposure (eg, because of less air condi-
tioning), increased prevalence of predisposing diseases
(eg, diabetes mellitus), or other factors.

Hospitalization Rates In the metaregression with hospi-
talization rates, we found that the coefficients for hospital
admission rates for CVD, COPD, or pneumonia were not
associated with modification of the PM, effect estimates.

Weather The plot of effect estimates for the distributed
lag PM, versus the correlation of PM;, with temperature
and relative humidity showed similar effects sizes across a
broad range of correlations (Figure 11). These results differ
little from those previously shown (Samet et al 2000, Figure
32, p 40). In the metaregression we found that the coeffi-
cients for temperature and relative humidity were not sig-
nificant for any of the three outcomes.
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Table 6. Effect Modification by Proportion of Population College Educated, Unemployed, Living in Poverty

or Nonwhite?

College Educated Unemployed Living in Poverty Nonwhite
% % % %
Change 95% CI Change 95% CI Change 95% CI Change 95% CI
Natural Spline Model
CVD —-0.17 —0.42, 0.07 0.78 0.42,1.14 0.46 0.12, 0.79 0.10 0.01, 0.19
COPD 0.60 —0.47, 1.67 —0.14 —2.60, 2.38 —0.96 —2.65,0.76 —0.22 —0.65, 0.20
Pneumonia —0.03 —0.52,0.47 0.37 —0.70, 1.45 0.46 —0.32, 1.26 0.16 —0.03, 0.34
Penalized Spline Model
CVD —0.05 —0.28, 0.17 0.45 0.01, 0.88 0.26 —0.08, 0.60 0.08 0.00, 0.16
COPD 0.87 0.00, 1.76 0.13 —2.23, 2.55 —1.48 —3.14, 0.21 —0.17 —0.62, 0.29
Pneumonia 0.17 —0.31, 0.64 0.24 —0.89, 1.39 0.19 —0.67, 1.06 0.08 —0.13, 0.29
3 Results are shown for a 10 pg/m® increase in PM, and a 5% point increase in effect modifiers in 14 cities.
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Copollutants For CVD, COPD, and pneumonia admis-
sions, the effects of PM;q in each city have been plotted
against the regression coefficients relating SO, and O to
PM; in each city (Figure 12). These plots show, as seen
before (Samet et al 2000, Figure 33, p 41), little evidence of
PM,  effect confounded by other pollutants except for
pneumonia, where control for ozone substantially
increased the effect size.

These results have been confirmed by the metaregres-
sion estimates shown in Figure 13 for natural spline

models and for penalized spline models. Here the baseline
estimate is the result of the distributed lag metaanalysis.
Plotted above each pollutant is the estimated intercept in
the metaregression of the PM, coefficients against the
slopes between that copollutant and PM;,. The use of
metaregression in a second stage to control for con-
founding by copollutants has been shown to be more resis-
tant to measurement error than traditional two-pollutant
models (Schwartz and Coull 2003).
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PM,, for CVD, COPD, and pneumonia.
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CONCLUSIONS
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The major conclusions we believe are warranted are:

1.

The S-Plus gam function, as written in versions in
use through July 2002, has default choices of conver-
gence criteria and iterations that are inappropriate
for epidemiologic studies of air pollution.

The S-Plus gam function, as currently written, does not
correctly estimate the standard errors for individual
cities although a fix for this will soon be available.

Metaanalyses of results from multiple cities (that is,
estimates of the mean effect across cities using the
original gam function), do not appear to have under-
estimated the standard errors of the results.

Several alternative approaches are available to solve
problems with the current S-Plus gam function.
These include: 1) a partial solution using stricter
convergence criteria, which in the context of multi-
city studies is unlikely to compromise the estimated
standard errors of overall results; 2) use of an alterna-
tive penalized spline GAM, which will avoid the
standard error problem, and 3) use of parametric
models such as natural spline models or case-cross-
over analyses. We have reported at least some results
using each approach, and all of the data have been
reanalyzed with the gam function plus tighter con-
vergence criteria or natural splines.

. With the exception of the pneumonia results, all of

the general conclusions previously reported hold
true either with stricter convergence criteria in GAM
or with regression spline or case-crossover models.
In most cases, only minor differences were found
among GAM results from with stricter convergence
criteria, penalized splines, and natural splines. With
pneumonia, however, natural splines showed a large
difference compared to GAM with stricter conver-
gence criteria or to penalized splines. In general,
reports at the US Environmental Protection Agency
(EPA) Workshop on GAM-Related Statistical Issues
in PM Epidemiology (November 4—6, 2002, Research
Triangle Park NC) also showed that the three
methods generally agreed, but that when they dif-
fered, the natural spline model separated from the
other two. This finding suggests that natural spline
models are not as robust as GAMs or penalized
spline models. The pneumonia results using natural
splines appear to be driven by high pollution days,
mostly in the summer when little pneumonia occurs.

Air pollution coefficients obtained using regression
splines and case-crossover analyses are, on average,

lower than those obtained using GAM. The extent of
this difference varies considerably from study to
study, and from outcome to outcome, and is not uni-
formly large. While effect estimates have been
reduced, the overall effect estimate averaged over
multiple studies is usually not dramatically different.

7. Further research is needed on the best ways to control
for season and weather; however, conclusions on the
effect of exposure to air pollutants may be drawn
using the current results from reanalyses of the major
multicity studies and from the studies, including mul-
ticity studies like APHEA1, which did not use GAMs.
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APPENDIX A. City-Specific Evaluations

HOSPITAL ADMISSIONS AND PM, , LEVELS

The details of the original models for each outcome and
each city are given in the original NMMAPS report in
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Appendix D, Tables D.2 through D.4 (Samet et al 2000, pp
65—66). Tables A.1 through A.3 present the new results for
hospital admissions, for the mean of PM;, on the day of
and day before the admission (lag 0/1) and for the distrib-
uted lag models, using GAM with the stricter convergence
criteria. The metaanalysis results are for the random
effects model.

Tables A.4 through A.6 show the city-specific models
with the same degree of freedom used with natural spline;
these correspond to Tables D.2 through D.4 in the original
NMMAPS report (Samet et al 2000, pp 65-66). Tables A.7
through A.9 show the results of the models using natural
spline for PM,, lag 0, lag 1, two-day mean, and quadratic
and unconstrained distributed lag models. Table A.10 pre-
sents results for the two-day mean for PM; less than
50 pg/m?. These tables correspond to Tables D.5 through
D.8 in the Appendix D of the original NMMAPS report
(Samet et al 2000, pp 67-68).

Tables A.11 through A.13 show the city-specific results
of models using penalized spline for the two-day mean of
PM, , and for quadratic and unconstrained distributed lag
models. The models were fit using the same degrees of
freedom as in the original GAM with LOESS.

MORTALITY AND PM,, LEVELS

Table A.14 reports the results of reanalyzing the distrib-
uted lag mortality data in each city, also either a) changing
only the convergence criteria or b) using natural spline
models with the same degree of freedom as before (Samet
et al 2000, Table B.3, p 58). Appendix B presents city-spe-
cific and mean results from the case-crossover approach
(Table B.3, this report).
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Table A.1. City-Specific and Combined Analyses of PM;, Associations with CVD Admissions?

PMlO Lag 0/1

Quadratic Distributed Lag

Unrestricted Distributed Lag

City B SE t B SE t B SE t

Bil‘mingham 0.00042 0.00032 1.3 0.00095 0.00047 2.0 0.00102 0.00047 2.2
Boulder 0.00175 0.00140 1.2 —0.00067 0.00210 —0.3 —0.00094 0.00211 —0.4
Canton 0.00067 0.00068 1.0 —0.00137 0.00113 —1.2 —0.00131 0.00113 —-1.2
Chicago 0.00102 0.00016 6.6 0.00108 0.00023 4.8 0.00107 0.00023 4.7
Colorado Springs 0.00114 0.00090 1.3 0.00227 0.00138 1.6 0.00220 0.00139 1.6
Detroit 0.00120 0.00016 7.6 0.00160 0.00023 6.8 0.00160 0.00023 6.9
Minneapolis 0.00071 0.00038 1.9 0.00057 0.00059 1.0 0.00062 0.00060 1.0
Nashville 0.00018 0.00060 0.3 —0.00035 0.00103 —0.3 —0.00031 0.00103 —0.3
New Haven 0.00212 0.00042 5.1 0.00204 0.00067 3.0 0.00205 0.00067 3.0
Pittsburgh 0.00113 0.00017 6.7 0.00113 0.00025 4.5 0.00114 0.00025 4.6
Provo/Orem 0.00033 0.00057 0.6 0.00072 0.00087 0.8 0.00075 0.00087 0.9
Seattle 0.00104 0.00026 4.0 0.00130 0.00036 3.6 0.00135 0.00036 3.7
Spokane 0.00060 0.00033 1.8 0.00073 0.00038 1.9 0.00077 0.00038 2.0
Youngstown 0.00100 0.00062 1.6 0.00019 0.00103 0.2 0.00019 0.00104 0.2
Maximum 0.00099 0.00010 9.8 0.00109 0.00014 7.6 0.00111 0.00014 7.9

likelihood

8 GAM with LOESS and stricter convergence criteria.

Table A.2. City-Specific and Combined Results of Analysis of PM; Associations with COPD Admissions®

PMlO Lag 0/1

Quadratic Distributed Lag

Unrestricted Distributed Lag

City B SE t B SE t B SE t

Birmingham —0.00148 0.00108 —1.4 —0.00131 0.00161 —0.8 —0.00118 0.00161 —0.7
Boulder 0.01117 0.00372 3.0 0.01867 0.00561 3.3 0.01788 0.00564 3.2
Canton 0.00148 0.00185 0.8 0.00284 0.00304 0.9 0.00279 0.00305 0.9
Chicago 0.00145 0.00051 2.8 0.00086 0.00083 1.0 0.00084 0.00083 1.0
Colorado Springs 0.00076 0.00250 0.3 0.00713 0.00347 2.1 0.00771 0.00348 2.2
Detroit 0.00207 0.00049 4.2 0.00300 0.00077 3.9 0.00297 0.00077 3.8
Minneapolis 0.00341 0.00118 2.9 0.00352 0.00184 1.9 0.00334 0.00185 1.8
Nashville 0.00214 0.00191 1.1 0.00240 0.00308 0.8 0.00198 0.00309 0.6
New Haven 0.00374 0.00177 2.1 0.00679 0.00276 2.5 0.00675 0.00277 2.4
Pittsburgh 0.00233 0.00047 5.0 0.00262 0.00073 3.6 0.00245 0.00074 3.3
Provo/Orem —0.00296 0.00260 —-1.1 —0.00732 0.00396 —1.8 —0.00713 0.00397 —1.8
Seattle 0.00099 0.00083 1.2 0.00443 0.00113 3.9 0.00459 0.00113 4.1
Spokane 0.00198 0.00097 2.0 0.00259 0.00102 2.5 0.00271 0.00103 2.6
Youngstown 0.00143 0.00181 0.8 —0.00195 0.00316 —0.6 —0.00162 0.00318 —0.5
Maximum 0.00170 0.00039 4.4 0.00250 0.00067 3.7 0.00250 0.00066 3.8

likelihood

2 GAM with LOESS and stricter convergence criteria.
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Table A.3. City-Specific and Combined Results of Analysis of PM;, Associations with Pneumonia Admissions?

PM,; Lag 0/1 Quadratic Distributed Lag Unrestricted Distributed Lag

City B SE t B SE t B SE t

Birmingham 0.00016 0.00061 0.3 0.00056 0.00083 0.7 0.00061 0.00083 0.7
Boulder 0.00354 0.00259 1.4 0.00535 0.00363 1.5 0.00507 0.00364 1.4
Canton 0.00115 0.00140 0.8 —0.00131 0.00228 —0.6 —0.00127 0.00229 —-0.6
Chicago 0.00201 0.00030 6.6 0.00206 0.00045 4.6 0.00274 0.00046 6.0
Colorado Springs 0.00439 0.00152 2.9 0.00814 0.00225 3.6 0.00792 0.00226 3.5
Detroit 0.00266 0.00033 8.0 0.00123 0.00050 2.5 0.00113 0.00050 2.3
Minneapolis 0.00291 0.00071 4.1 0.00179 0.00108 1.6 0.00190 0.00109 1.7
Nashville —0.00126 0.00127 —-1.0 0.00065 0.00189 0.3 0.00071 0.00189 0.4
New Haven 0.00287 0.00082 3.5 —0.00141 0.00135 —1.0 —0.00067 0.00138 —0.5
Pittsburgh 0.00170 0.00035 4.8 0.00126 0.00054 2.3 0.00126 0.00054 2.3
Provo/Orem 0.00035 0.00100 0.3 0.00279 0.00141 2.0 0.00294 0.00141 2.1
Seattle 0.00148 0.00051 2.9 0.00166 0.00069 2.4 0.00150 0.00070 2.1
Spokane 0.00081 0.00063 1.3 0.00156 0.00068 2.3 0.00171 0.00069 2.5
Youngstown 0.00156 0.00137 1.1 0.00077 0.00220 0.3 0.00095 0.00222 0.4
Maximum 0.00169 0.00028 6.1 0.00146 0.00031 4.7 0.00160 0.00034 4.8

likelihood

2 GAM with LOESS and stricter convergence criteria.

Table A.4. Base Model Characteristics for CVD Admissions?®

Relative ~ Temperature Barometric Autoregressive

City Season Temperature Humidity Lag1 Pressure  Day of Week Terms
Birmingham 20 3 3 3 4 6 none
Boulder 6 2 2 3 2 6 none
Canton 11 3 2 3 4 6 none
Chicago 19 3 2 2 4 6 arl,ar2,ar3
Colorado Springs 10 3 3 3 3 6 none
Detroit 17 3 4 3 4 6 arl,ar2,ar3
Minneapolis 21 3 4 3 3 6 none
Nashville 4 2 3 2 2 6 none
New Haven 13 2 3 3 4 6 none
Pittsburgh 26 3 2 3 4 6 arl
Provo/Orem 8 3 3 4 3 6 none
Seattle 28 3 2 3 4 6 none
Spokane 18 3 2 3 3 6 none
Youngstown 12 3 3 3 2 6 none

8 Units are degrees of freedom.
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Table A.5. Base Model Characteristics for COPD Admissions®

Relative  Temperature Barometric Autoregressive
City Season Temperature Humidity Lag 1 Pressure  Day of Week Terms
Birmingham 18 2 2 2 3 6 none
Boulder 10 3 2 2 2 6 none
Canton 10 3 2 3 3 6 none
Chicago 24 3 2 2 3 6 arl,ar2,ar3
Colorado Springs 14 3 3 2 2 6 none
Detroit 20 3 3 3 3 6 arl,ar2,ar3
Minneapolis 24 3 3 3 3 6 none
Nashville 14 3 3 3 4 6 none
New Haven 6 3 2 3 4 6 none
Pittsburgh 32 3 2 3 4 6 none
Provo/Orem 8 2 2 2 2 6 none
Seattle 21 3 4 3 5 6 none
Spokane 17 3 2 3 3 6 none
Youngstown 7 2 5 2 3 6 none
& Units are degrees of freedom.
Table A.6. Base Model Characteristics for Pneumonia Admissions?

Relative =~ Temperature Barometric Autoregressive
City Season  Temperature Humidity Lag 1 Pressure  Day of Week Terms
Birmingham 22 5 3 5 3 6 arl,ar2,ar4,ar5,ar7
Boulder 11 5 3 3 3 3 none
Canton 17 3 2 3 3 6 none
Chicago 35 2 2 2 3 6 arl,ar2,ar3
Colorado Springs 24 2 4 2 2 3 none
Detroit 22 3 2 4 4 6 arl,ar2,ar3,ar4
Minneapolis 29 3 3 3 3 6 arl,ar2,ar3
Nashville 14 3 3 3 2 3 arl,ar2
New Haven 18 3 3 4 5 6 arl
Pittsburgh 36 4 2 4 5 6 arl,ar2,ar3,ar4
Provo/Orem 19 2 3 2 3 6 none
Seattle 26 5 4 5 3 6 arl,ar2,ar3
Spokane 27 3 2 3 3 6 none
Youngstown 14 4 5 3 5 6 none

@ Units are degrees of freedom.
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Table A.7. City-Specific and Combined Results of Analysis of PM; Associations with CVD Admissions?

Quadratic Unrestricted
PM;, Lag 0 PM;( Lag 1 PM; o Lag 0/1 Distributed Lag Distributed Lag
City B SE t B SE t B SE t B SE t B SE t
Birmingham 0.00069 0.00030 2.3 0.000044 0.000293 0.2 0.00047 0.00034 14 0.00102 0.00050 2.0 0.00108 0.00050 2.2
Boulder 0.00301 0.00141 2.1 0.000009 0.001385 0.0 0.00218 0.00154 14 0.00016 0.00238 0.1 —0.00010 0.00239 0.0
Canton 0.00034 0.00081 0.4 0.000849 0.000749 1.1 0.00083 0.00076 1.1 —0.00088 0.00132-0.7 —0.00081 0.00132-0.6
Chicago 0.00101 0.00017 6.0 0.000533 0.000167 3.2 0.00087 0.00017 5.0 0.00099 0.00025 4.0 0.00113 0.00025 4.6
Colorado 0.00021 0.00092 0.2 0.001353 0.000857 1.6 0.00117 0.00094 1.2 0.00228 0.00149 1.5 0.00221 0.00149 1.5
Springs
Detroit 0.00152 0.00019 7.8 0.001153 0.000183 6.3 0.00146 0.00018 8.3 0.00193 0.00028 6.9 0.00193 0.00028 6.8

Minneapolis  0.00113 0.00038 2.9 0.000195 0.000370 0.5 0.00074 0.00042 1.7 0.00063 0.00065 1.0 0.00065 0.00065 1.0

Nashville —0.00021 0.00061-0.3 0.000055 0.000606 0.1 0.00027 0.00063 0.4 —-0.00012 0.00106 -0.1 —0.00008 0.00106 —0.1
New Haven 0.00197 0.00047 4.2 0.001075 0.000466 2.3 0.00221 0.00050 4.4 0.00231 0.00084 2.7 0.00229 0.00084 2.7
Pittsburgh 0.00084 0.00017 5.0 0.000631 0.000165 3.8 0.00099 0.00019 5.1 0.00094 0.00029 3.2 0.00095 0.00029 3.3

Provo/Orem 0.00052 0.00064 0.8 0.000006 0.000578 0.0 0.00030 0.00067 0.4 0.00066 0.00097 0.7 0.00069 0.00097 0.7

Seattle 0.00100 0.00028 3.5 0.000205 0.000277 0.7 0.00068 0.00030 2.2 0.00065 0.00044 1.5 0.00070 0.00044 1.6

Spokane 0.00069 0.00034 2.0 0.000629 0.000314 2.0 0.00077 0.00035 2.2 0.00100 0.00040 2.5 0.00104 0.00041 2.6

Youngstown 0.00173 0.00071 2.4 -0.000585 0.000689-0.8 0.00066 0.00072 0.9 —0.00031 0.00122-0.3 —0.00038 0.00122-0.3

Maximum 0.00101 0.00013 8.0 0.000520 0.000120 4.3 0.00095 0.00012 7.7 0.00105 0.00017 6.2 0.00111 0.00016 6.7
likelihood

@ Natural spline model.

Table A.8. Gity-Specific and Combined Results of Analysis of PM;q Associations with COPD Admissions?®

Quadratic Unrestricted
PM;, Lag 0 PM,;, Lag 1 PM,, Lag 0/1 Distributed Lag Distributed Lag
City B SE t B SE t B SE t B SE t B SE t
Birmingham —-0.00075 0.00100-0.7 -0.00144 0.00098-1.5 -0.00132 0.00114-1.2 -0.00120 0.00172 —0.7 —0.00109 0.00173-0.6
Boulder 0.00732 0.00383 1.9 0.00958 0.00363 2.6 0.01145 0.00420 2.7 0.01934 0.00657 2.9 0.01861 0.00659 2.8
Canton —0.00004 0.00221 0.0 0.00361 0.00199 1.8 0.00115 0.00207 0.6 0.00249 0.00360 0.7 0.00235 0.00361 0.6
Chicago 0.00045 0.00053 0.8 0.00066 0.00052 1.3 0.00073 0.00058 1.3 0.00010 0.00090 0.1 0.00007 0.00090 0.1
Colorado 0.00279 0.00250 1.1 -0.00129 0.00246 —0.5 0.00164 0.00268 0.6 0.00891 0.00376 2.4 0.00950 0.00377 2.5
Springs
Detroit 0.00151 0.00064 2.3 0.00187 0.00060 3.1 0.00174 0.00058 3.0 0.00248 0.00098 2.5 0.00248 0.00099 2.5

Minneapolis 0.00176 0.00120 1.5 0.00181 0.00118 1.5 0.00263 0.00134 2.0 0.00224 0.00205 1.1 0.00214 0.00205 1.0

Nashville 0.00154 0.00194 0.8 0.00088 0.00198 0.4 0.00198 0.00201 1.0 0.00212 0.00326 0.6 0.00168 0.00328 0.5
New Haven 0.00442 0.00189 2.3  0.00207 0.00183 1.1 0.00356 0.00198 1.8 0.00629 0.00314 2.0 0.00622 0.00315 2.0
Pittsburgh 0.00124 0.00047 2.6 0.00112 0.00046 2.4 0.00159 0.00055 2.9 0.00182 0.00086 2.1 0.00166 0.00087 1.9

Provo/Orem -0.00363 0.00287 —1.3 —0.00413 0.00258-1.6 —0.00473 0.00298-1.6 —0.00927 0.00434 —2.1 —0.00921 0.00435-2.1
Seattle 0.00083 0.00088 0.9 0.00022 0.00086 0.3 0.00073 0.00094 0.8 0.00439 0.00129 3.4 0.00456 0.00129 3.5
Spokane 0.00212 0.00100 2.1  0.00168 0.00093 1.8 0.00196 0.00101 1.9 0.00270 0.00105 2.6 0.00282 0.00106 2.7
Youngstown 0.00034 0.00208 0.2 0.00139 0.00185 0.7 0.00177 0.00199 0.9 -0.00208 0.00360 —0.6 —0.00165 0.00361-0.5

Maximim 0.00108 0.00031 3.5 0.00098 0.00038 2.6 0.00131 0.00038 3.4 0.00208 0.00074 2.8 0.00209 0.00074 0.0
likelihood

 Natural spline model.
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Table A.9. City-Specific and Combined Results of Analysis of PM;, Associations with Pneumonia Admissions?

Quadratic Unrestricted

PM;, Lag 0 PM;, Lag 1 PM,, Lag 0/1 Distributed Lag Distributed Lag
City B SE t B SE t B SE t B SE t B SE t
Birmingham 0.00029 0.00060 0.5 0.00004 0.00057 0.1 0.00000 0.00065 0.0 0.00105 0.00089 1.2 0.00112 0.00089 1.3
Boulder 0.00635 0.00260 2.4 0.00133 0.00261 0.5 0.00512 0.00290 1.8 0.00884 0.00432 2.0 0.00897 0.00433 2.1
Canton -0.00014 0.00171 -0.1 -0.00101 0.00165 -0.6 —0.00057 0.00165 —0.3 —0.00417 0.00282 —1.5 —0.00410 0.00282 -1.5
Chicago 0.00076 0.00032 2.4 0.00007 0.00031 0.2 0.00082 0.00033 2.4 0.00062 0.00052 1.2 0.00080 0.00052 1.5
Colorado 0.00211 0.00163 1.3 0.00122 0.00156 0.8 0.00249 0.00172 1.4 0.00345 0.00273 1.3 0.00318 0.00273 1.2
Springs
Detroit 0.00148 0.00044 3.4 0.00076 0.00042 1.8 0.00184 0.00039 4.7 0.00024 0.00060 0.4 0.00015 0.00060 0.2
Minneapolis 0.00098 0.00077 1.3 0.00085 0.00076 1.1 0.00115 0.00080 1.4 —0.00060 0.00125 —0.5 —0.00058 0.00122 -0.5
Nashville 0.00111 0.00151 0.7 0.00085 0.00159 0.5 —0.00143 0.00135 -1.1 0.00030 0.00201 0.2 0.00041 0.00202 0.2
New Haven 0.00145 0.00100 1.4 -0.00228 0.00100 —2.3 0.00121 0.00100 1.2 —0.00236 0.00160 —1.5 —0.00226 0.00160 —1.4
Pittsburgh 0.00047 0.00036 1.3 —0.00064 0.00035 —1.8 —0.00009 0.00041 -0.2 —-0.00116 0.00064 —-1.8 —0.00119 0.00064 —1.8
Provo/Orem -0.00003 0.00115 0.0 —0.00067 0.00107 —0.6 —0.00046 0.00123 —0.4 —0.00030 0.00134 —0.2 —0.00001 0.00135 0.0
Seattle 0.00048 0.00058 0.8 0.00068 0.00056 1.2 0.00062 0.00059 1.0 —0.00004 0.00082 —0.1 —0.00020 0.00083 —0.2
Spokane 0.00044 0.00068 0.6 —0.00073 0.00065 —1.1 —0.00035 0.00070 —0.5 0.00017 0.00076 0.2 0.00033 0.00076 0.4
Youngstown 0.00133 0.00154 0.9 -0.00130 0.00153 —0.8 —0.00052 0.00158 —-0.3 —0.00248 0.00263 —0.9 —0.00236 0.00265 —0.9
Maximum 0.00077 0.00017 4.6 —0.00003 0.00022 -0.1 0.00056 0.00027 2.1 —0.00002 0.00032 —0.1 0.00001 0.00033 0.0
likelihood

# Natural spline model.

Table A.10. Results for Two-Day Mean Exposure to PM,, for Values Less Than 50 pg/m® and Hospital Admissions for
Specific Diagnoses in 14 US Cities?

CVD COPD Pneumonia

City B SE t B SE t B SE t

Birmingham 0.00041 0.00061 0.7 —0.00273 0.00200 —1.4 —0.00221 0.00153 —1.4
Boulder 0.00015 0.00197 0.1 0.00871 0.00536 1.6 0.00550 0.00360 1.5
Canton 0.00104 0.00099 1.1 0.00043 0.00268 0.2 —0.00113 0.00212 —0.5
Chicago 0.00058 0.00035 1.7 0.00156 0.00107 1.5 0.00128 0.00062 2.1
Colorado Springs 0.00208 0.00150 1.4 0.00436 0.00424 1.0 0.00170 0.00291 0.6
Detroit 0.00248 0.00039 6.3 0.00213 0.00131 1.6 0.00249 0.00091 2.7
Minneapolis 0.00105 0.00058 1.8 0.00252 0.00184 1.4 0.00266 0.00116 2.3
Nashville 0.00044 0.00090 0.5 0.00533 0.00281 1.9 —0.00105 0.00199 —0.5
New Haven 0.00345 0.00072 4.8 —0.00043 0.00300 —0.1 0.00173 0.00152 1.1
Pittsburgh 0.00181 0.00037 4.9 0.00214 0.00107 2.0 0.00169 0.00094 1.8
Provo/Orem 0.00190 0.00154 1.2 —0.00555 0.00725 —0.8 0.00121 0.00311 0.4
Seattle 0.00050 0.00056 0.9 0.00405 0.00168 2.4 0.00259 0.00122 2.1
Spokane 0.00072 0.00088 0.8 0.00370 0.00249 1.5 —0.00365 0.00164 —2.2
Youngstown 0.00113 0.00109 1.0 0.00722 0.00303 2.4 0.00101 0.00232 0.4
Maximum 0.00131 0.00028 4.7 0.00219 0.00060 3.7 0.00105 0.00051 2.1

likelihood

# Natural spline model.
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Table A.11. City-Specific and Combined Results of Analysis of PM;, Associations with CVD Admissions?

PM,;, Lag 0/1 Quadratic Distributed Lag Unconstrained Distributed Lag

City B SE t B SE t B SE t

Birmingham 0.00062 0.00035 1.8 0.00128 0.00050 2.6 0.00133 0.00050 2.7
Boulder 0.00160 0.00157 1.0 —0.00095 0.00233 —-0.4 —0.00116 0.00233 —0.5
Canton 0.00108 0.00077 1.4 —0.00116 0.00129 —-0.9 —0.00107 0.00129 —0.8
Chicago 0.00103 0.00015 6.8 0.00109 0.00024 4.6 0.00109 0.00024 4.6
Colorado Springs  0.00106 0.00099 1.1 0.00233 0.00145 1.6 0.00226 0.00146 1.6
Detroit 0.00119 0.00016 7.2 0.00161 0.00028 5.8 0.00171 0.00028 6.2
Minneapolis 0.00068 0.00042 1.6 0.00040 0.00062 0.6 0.00044 0.00062 0.7
Nashville 0.00053 0.00066 0.8 —0.00028 0.00105 —-0.3 —0.00029 0.00105 —-0.3
New Haven 0.00242 0.00048 5.0 0.00233 0.00078 3.0 0.00232 0.00078 3.0
Pittsburgh 0.00099 0.00019 5.3 0.00100 0.00028 3.6 0.00102 0.00028 3.6
Provo/Orem 0.00040 0.00073 0.6 0.00121 0.00077 1.6 0.00128 0.00078 1.6
Seattle 0.00087 0.00031 2.8 0.00100 0.00041 2.4 0.00103 0.00042 2.5
Spokane 0.00047 0.00033 1.5 0.00065 0.00039 1.7 0.00070 0.00040 1.7
Youngstown 0.00113 0.00072 1.6 0.00061 0.00117 0.5 0.00058 0.00118 0.5
Maximum 0.00099 0.00010 10.1 0.00108 0.00014 7.7 0.00111 0.00015 7.6

likelihood

@ Penalized spline model.

Table A.12. City-Specific and Combined Results of Analysis of PM;, Associations with COPD Admissions?®

PM,, Lag 0/1 Quadratic Distributed Lag Unconstrained Distributed Lag

City B SE t B SE t B SE t

Birmingham —0.00112 0.00118 —-0.9 —0.00104 0.00168 —0.6 —0.00094 0.00168 —0.6
Boulder 0.01136 0.00405 2.8 0.01801 0.00642 2.8 0.01742 0.00643 2.7
Canton 0.00075 0.00208 0.4 0.00107 0.00347 0.3 0.00094 0.00348 0.3
Chicago 0.00121 0.00057 2.1 0.00109 0.00088 1.2 0.00108 0.00088 1.2
Colorado Springs 0.00142 0.00256 0.6 0.00834 0.00371 2.3 0.00855 0.00372 2.3
Detroit 0.00180 0.00057 3.2 0.00304 0.00095 3.2 0.00411 0.00098 4.2
Minneapolis 0.00293 0.00131 2.2 0.00321 0.00194 1.7 0.00308 0.00194 1.6
Nashville 0.00178 0.00200 0.9 0.00182 0.00321 0.6 0.00140 0.00323 0.4
New Haven 0.00356 0.00190 1.9 0.00619 0.00305 2.0 0.00613 0.00305 2.0
Pittsburgh 0.00191 0.00054 3.5 0.00212 0.00083 2.6 0.00198 0.00083 2.4
Provo/Orem —0.00356 0.00280 —-1.3 —0.00225 0.00295 —0.8 —0.00209 0.00298 —0.7
Seattle 0.00102 0.00096 1.1 0.00479 0.00124 3.9 0.00497 0.00124 4.0
Spokane 0.00230 0.00089 2.6 0.00248 0.00108 2.3 0.00254 0.00110 2.3
Youngstown 0.00104 0.00212 0.5 —0.00268 0.00345 —0.8 —0.00245 0.00346 —0.7
Maximum 0.00155 0.00036 4.4 0.00236 0.00063 3.7 0.00251 0.00067 3.7

likelihood

2 Penalized spline model.
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Table A.13. City-Specific and Combined Results of Analysis of PM;, Associations with Pneumonia Admissions®

PM,, Lag 0/1 Quadratic Distributed Lag Unconstrained Distributed Lag

City B SE t B SE t B SE t

Birmingham 0.00000 0.00065 0.0 0.00078 0.00087 0.9 0.00090 0.00087 1.0
Boulder 0.00308 0.00280 1.1 0.00496 0.00425 1.2 0.00505 0.00426 1.2
Canton 0.00046 0.00163 0.3 —0.00305 0.00270 -1.1 —0.00305 0.00271 -1.1
Chicago 0.00295 0.00032 9.3 0.00123 0.00049 2.5 0.00128 0.00049 2.6
Colorado Springs  0.00391 0.00163 2.4 0.00685 0.00257 2.7 0.00660 0.00257 2.6
Detroit 0.00223 0.00036 6.1 0.00075 0.00059 1.3 0.00171 0.00059 2.9
Minneapolis 0.00191 0.00078 2.4 0.00069 0.00116 0.6 0.00061 0.00117 0.5
Nashville —0.00098 0.00124 —0.8 0.00024 0.00198 0.1 0.00022 0.00199 0.1
New Haven 0.00217 0.00100 2.2 —0.00225 0.00156 —1.4 —0.00221 0.00156 —-1.4
Pittsburgh 0.00044 0.00041 1.1 —0.00037 0.00062 —0.6 —0.00042 0.00062 —-0.7
Provo/Orem 0.00009 0.00117 0.1 0.00034 0.00128 0.3 0.00068 0.00129 0.5
Seattle 0.00117 0.00060 1.9 0.00113 0.00079 1.4 0.00099 0.00080 1.2
Spokane 0.00010 0.00060 0.2 0.00098 0.00071 1.4 0.00114 0.00072 1.6
Youngstown 0.00030 0.00157 0.2 —0.00100 0.00253 —-0.4 —0.00081 0.00255 —-0.3
Maximum 0.00123 0.00038 3.3 0.00064 0.00031 2.1 0.00080 0.00033 2.4

likelihood

@ Penalized spline model.

Table A.14. Results of Distributed Lag Model for Daily Deaths and PM, in 10 US Cities®

GAM with Stricter Criteria

Natural Spline Model

Penalized Spline Model

City Quadratic Unconstrained Quadratic Unconstrained Quadratic Unconstrained
Birmingham 0.000311 0.000299 0.000042 0.000299 -0.000654 —0.000645
(0.000401) (0.000539) (0.000432) (0.001134) (0.000518) (0.000717)
Canton 0.001595 0.001675 0.001207 0.001267 0.001681 0.001792
(0.001015) (0.001353) (0.001164) (0.001567) (0.001116) (0.001513)
Chicago 0.000936 0.000874 0.000965 0.000899 0.001011 0.000978
(0.000190) (0.000265) (0.000207) (0.000285) (0.000185) (0.000261)
Colorado Springs 0.001864 0.001674 0.001809 0.001571 0.001786 0.001678
(0.001043) (0.001252) (0.001134) (0.001431) (0.001105) (0.001397)
Detroit 0.001549 0.001523 0.001311 0.001309 0.001150 0.001139
(0.000216) (0.000302) (0.000261) (0.000362) (0.000251) (0.000354)
Minneapolis 0.001930 0.001867 0.001669 0.001614 0.002101 0.002049
(0.000381) (0.000511) (0.000416) (0.000549) (0.000404) (0.000545)
New Haven 0.001819 0.001778 0.001889 0.001858 0.001876 0.001778
(0.000570) (0.000771) (0.000661) (0.000873) (0.000638) (0.000848)
Pittsburgh 0.000752 0.000712 0.000200 0.000169 0.000577 0.000561
(0.000224) (0.000300) (0.000258) (0.000352) (0.000243) (0.000334)
Seattle 0.001494 0.001490 0.001249 0.001245 0.001370 0.001372
(0.000283) (0.000337) (0.000314) (0.000387) (0.000298) (0.000364)
Spokane 0.000687 0.000631 0.000933 0.000863 0.000958 0.000944
(0.000456) (0.000487) (0.000475) (0.000514) (0.000569) (0.000609)
Overall 0.001189 0.001124 0.000997 0.000975 0.001039 0.001033
(random effects)  (0.000166) (0.000161) (0.000187) (0.000158) (0.000105) (0.000142)

8 All data are B + SE.
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APPENDIX B. Particulate Air Pollution and Daily
Deaths: A Multicity Case-Crossover Analysis
(Author: Joel Schwartz)*

ABSTRACT

Numerous studies have reported that day-to-day
changes in particulate air pollution are associated with
daily deaths. Recently, several reports have indicated that
the software used to control for season and weather in
some of those studies had deficiencies, and suggested the
use of regression splines as an alternative. In this study, I
propose the use of the case-crossover design as an alterna-
tive. This approach controls for seasonal patterns by
design instead of by complex modeling, and, by construc-
tion, controls for all slowly varying covariates (age,
smoking, etc) by matching. I applied that approach to a
study of 10 US cities. Weather and day of the week were
controlled for in the regression.

I found that a 10 pg/m? increase in PM;, was associated
with a 0.35% increase in daily deaths (95% CI, 0.21, 0.49).
The association appeared quite linear. These results are
similar to results of the NMMAPS study when using
3.5 df/year to control for season but are larger than the
results using 7 df/year to control for season. Thus the asso-
ciation between PM;, and daily deaths persisted across
different modeling strategies.

INTRODUCTION

The case-crossover design, introduced to epidemiologic
research by Maclure (1991), is an attractive method for
investigating the acute effects of an exposure. For example,
the method has been used to investigate triggers of
myocardial infarction (Mittleman et al 1993). In recent
years, it has been applied to analysis of acute effects of
environmental exposures, especially air pollution (Lee and
Schwartz 1992; Neas et al 1999; Sunyer et al 2000; Levy et al
2001). In the case-crossover approach, a case-control study
is conducted whereby each person who had an event is
matched with herself on a nearby time period where she did
not have the event. The subject’s characteristics and
exposures at the time of the case event are compared with
those of a control period in which the event did not occur.
Each risk set consists of one individual as that individual
crosses over between different exposure levels in the
interval between the two time periods. These matched pairs
may be analyzed using conditional logistic regression.
Multiple control periods may be used.

*This research was supported in part by EPA Grant R827353.
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The data are then analyzed as a matched case-control
study. Applied to the association of air pollution with risk
of death, the approach has several advantages. First, it clar-
ifies a key feature of the study of acute response to air pol-
lution. Because in this analysis each subject serves as her
own control, use of a nearby day as the control period
means that all covariates that change slowly over time
(such as smoking history, age, body mass index, usual diet,
diabetes mellitus) are controlled for by matching.

The second advantage involves the method of control
for seasonal variations in mortality risk. The other possible
technique for analyzing the association of day-to-day
changes in air quality with day-to-day changes in daily
deaths or hospital admissions is the Poisson regression of
daily data (Schwartz and Dockery 1992a). Because these
regressions make comparisons across the full range of data,
including multiple years, the calculations must control for
season and long-term time trends. While several
approaches have been taken to control for seasonal pat-
terns in the data (Schwartz and Dockery 1992b; Katsouy-
anni et al 1997), GAMs were applied to these analyses in
1994 (Hastie and Tibshirani 1990; Schwartz 1993). That
technique quickly became the standard in subsequent
studies (Samet et al 2000; Katsouyanni et al 2001). These
models are attractive because they use smooth curves to
control for season (and weather).

Nonparametric smoothing is attractive when one
believes a nonlinear association exists with a covariate
because the method is more flexible than parametric
approaches (Hastie and Tibshirani 1990). Recent studies,
however, have reported problems with the algorithms that
implement these models (Dominici at al 2002). In indi-
vidual studies, the standard errors of the parametric terms,
including the hypothesis variables, are not correctly esti-
mated (Ramsay et al 2003). Because underestimates of
within-location standard errors lead to larger estimates of
the between-location standard errors, recent reanalyses of
multilocation studies show no evidence of bias in esti-
mated standard errors of combined-effect estimates
(Dominici 2002; Schwartz 2002).

These problems have encouraged reanalyzing previous
studies to confirm whether the reported associations still
hold. Natural splines are a possible alternative and have
previously been used (Schwartz 1993), but they have some
sensitivity to the knot locations for the splines. Natural
splines have recently been applied to a reanalysis of the
National Mortality and Morbidity Air Pollution Study
(NMMAPS), a multicity study of particulate air pollution
and daily deaths (Dominici et al 2002). There has been a
continuing debate over how many degrees of freedom are
appropriate to control for season, without overcontrol, and
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switching from nonparametric smoothing to natural
splines does not resolve that issue.

Results from the large number of studies concerning
daily changes in air pollution and deaths have formed the
basis for tighter air pollution standards in both the United
States and Europe. Recent questions over the reliability of
these estimates have, therefore, considerable importance
for public health policies.

The case-crossover design controls for seasonal variation,
time trends, and slowly varying time covariates by sepa-
rating the case and control periods in each risk set by a rela-
tively small time interval. Bateson and Schwartz (1999,
2001) demonstrated that by choosing control days close to
event days, even strong confounding of exposure by sea-
sonal patterns could be controlled in this approach. Also,
because the strata of days are matched for each individual, it
is straightforward to combine events from multiple loca-
tions in a single analysis. The difference in seasonal pat-
terns from city to city has prevented this approach in
multicity studies using Poisson regression. This makes the
approach an attractive alternative to the Poisson models.
While Bateson and Schwartz (2001) have shown that the
power is lower in the case-crossover approach, this is less of
a concern in a large multicity study.

While sampling control days in a manner that removes
seasonal confounding is straightforward, subtle selection
bias can occur in these analyses (Levy et al 2001). Days
before the first event serve as control days but cannot serve
as event days, and occasional days with missing data for
exposure during the event series can further increase
selection bias. Several approaches have been used to
address this problem, and this paper uses the approach of
Bateson and Schwartz (2001), which calculates and sub-
tracts the bias. I have applied this approach to a multicity
study of particulate air pollution and daily deaths in a
study of ten US cities that have previously been analyzed
using smoothing techniques.

DATA AND METHODS

Most cities in the United States only monitored PM,
once every six days. I focused on 10 US cities with daily
data to obtain adequate power. They were Canton, Ohio;
Birmingham, Alabama; Chicago, Illinois; Colorado
Springs, Colorado; Detroit, Michigan; Minneapolis, Min-
nesota; New Haven, Connecticut; Pittsburgh, Pennsyl-
vania; Seattle, Washington; and Spokane, Washington. I
chose the metropolitan county containing each city except
for Minneapolis, which was combined with St Paul and
analyzed as one city.

Daily Mortality

Daily deaths in the county containing each city were
extracted from tapes prepared by the National Center for
Health Statistics (NCHS) for calendar years 1986 through
1993. Deaths from accidental causes (ICD 9 = 800) were
excluded, as were all deaths that occurred outside of the
city. Daily measurements of mean temperature and relative
humidity were obtained from the nearest National Weather
Service Surface Station (EarthInfo CD-rom of National Cli-
matic Data Center Surface Airways, EarthInfo, Boulder CO).

Air pollution data for PM;, were obtained from the
EPA’s Aerometric Information Retrieval System (AIRS).
Many of the cities have more than one monitoring loca-
tion, requiring a method to average data from multiple
locations. This study used an algorithm as previously
reported (Schwartz 2000). To ensure that our exposure
measure represented the general population exposure and
not local conditions affecting only the immediate vicinity
of a given monitor, the correlations among all monitors in
each county were computed. Monitors within the lowest
tenth percentile of the correlation across all counties were
excluded. Some monitors only measure PM;, one day in
six, and different monitors have different means and stan-
dard deviations. I did not want the daily pollution value to
change from one day to another because different monitors
were reported, but I wanted to capture any differences in
actual ambient levels.

In each city the daily mean among monitors for each
pollutant was calculated using an algorithm that
accounted for differences in the annual mean and stan-
dardized deviations of each monitor as follows: 1) The
daily standardized deviations were averaged for each mon-
itor on each day. 2) These averages were then multiplied
by the standard deviation of all of the monitor readings for
the entire year and added back in the annual average of all
of the monitors (Samet et al 2000). I used the air pollution
concentration the day before each death as the exposure
variable because the NMMAPS (Dominici et al 2002) study
found that to be the most predictive single-day exposure.
The NMMAPS 90-cities study could not analyze multiday
exposures because most of their cities only measured PM,
one day in six. Use of the same exposure metric facilitated
comparisons between the studies.

Analytic Strategy

Two analyses were conducted. Both used conditional
logistic regression to analyze the data in a case-crossover
design. Matched strata were constructed for each subject: the
event day (day of death) and 18 matched control days. These
days were chosen to be days 7 to 15 before the event day, and
days 7 to 14 after the event day. We chose control days far
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Table B.1. City-Specific or Descriptive Statistics for Each of the 10 Cities

City Time Period Temperature (°C)? Relative Humidity? PM,, (ng/m?)?
Birmingham 4/1/87-12/31/93 11, 18, 24 62,71, 80 20, 31, 46
Canton 1/1/89-12/24/94 2,11, 19 66, 74, 82 19, 26, 34
Chicago 3/1/88-12/24/94 2,11,19 62, 70,79 23, 33, 46
Colorado Springs 7/1/87-12/24/94 2,11, 18 39, 51, 66 18, 23, 31
Detroit 5/1/86-12/24/94 2,11,19 64,71,79 21, 32,49
Minneapolis 4/1/87-12/24/94 -1,9,19 60, 69, 78 17, 24, 35
New Haven 5/1/87-12/31/91 3,12, 20 57,67,77 17, 26, 38
Pittsburgh 1/1/87-12/24/94 3,12, 20 61, 70, 79 19, 30, 47
Seattle 1/1/86-12/24/94 7,11, 16 67,77, 85 18, 27, 39
Spokane 10/1/85-12/24/94 2,8,16 49, 68, 84 23, 36, 57

2 Each set of 3 numbers refers to the 25th, 50th, and 75th percentiles.

from the event day to avoid serial correlation in the pollution
and mortality data. Control days were symmetrically chosen
about the event day because Bateson and Schwartz (1999)
demonstrated that symmetric control days were needed to
control for long-term time trends (if present). Navidi (1998)
pointed out that bidirectional sampling is needed to avoid
some biases in the case-control method and does not present
any conceptual difficulties as long as death of the subject
does not affect the air pollution concentrations.

In all analyses, I controlled for day of the week, temper-
ature and relative humidity. Temperature may be nonlin-
early related to deaths, and so I used regression splines to
control for temperature on the day of death and the day
before death. These splines used 3 df each. Relative
humidity was similarly controlled for.

The first analysis used a two-stage approach. A city-spe-
cific regression was fit using the matched strata from each
city. The log odds ratios from those 10 analyses were then
combined using the iterative maximum likelihood algo-
rithm of Berkey and coworkers (1995). In this analysis, the
splines for temperature could have different coefficients in
different studies. Because the control days are chosen close
to the event day in the case-crossover analysis, the range of
temperature variation, and the range of its effects, is lower
than in other study designs. This suggested that we could
aggregate the strata and analyze the association with air pol-
lution across all ten cities in a single model. This is an
attractive capability of this study design and constituted our
second analysis. We compared the results from the two
analyses to determine how sensitive the results were to
modeling weather with one set of splines for all locations.
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RESULTS

Table B.1 shows the 25th, 50th, and 75th percentiles of
the distribution of daily deaths, PM, levels, temperature,
and relative humidity in each of the ten locations. Weather
was only modestly correlated with PM; in these locations
(Table B.2).

In the two-stage analysis, I found a significant associa-
tion between PM; 4 and daily deaths. The magnitude of the
association was a 0.35% increase in daily deaths per
10 ug/m3 increment of PM;, (95% CI, 0.21, 0.49). Com-
bining the strata and analyzing in one stage had little
impact on the estimate (0.34% increase, 95% CI, 0.21,
0.48). The individual city results are shown in Table B.3.
There was no evidence for heterogeneity in the association
(x? = 4.16 on 9 df, P = 0.90).

To test the shape of the dose-response relation, I
replaced the linear term for PM;, with the indicator vari-
ables for days when concentrations were between 15 and
25 ug/m3, between 25 and 34 ug/m3, between 35 and

Table B.2. Correlation Between PM;, and Other
Environmental Variables in 10 Cities

City Temperature Relative Humidity
Birmingham 0.26 —0.30
Canton 0.42 —0.16
Chicago 0.36 —0.30
Colorado Springs —0.34 -0.11
Detroit 0.37 —0.14
Minneapolis 0.29 —0.35
New Haven 0.05 —0.15
Pittsburgh 0.45 —0.23
Seattle —0.22 —-0.11
Spokane —0.01 -0.19
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Table B.3. Percentage of Change in Daily Deaths for
10 pg/m? Increase in PM;, by City, and Overall, Using
Either a Two-Stage or Single-Stage Analysis

City % Change 95% CI
Birmingham —0.01 —0.58, 0.56
Canton —0.02 —-1.67, 1.65
Chicago 0.39 0.14, 0.64
Colorado Springs 0.35 —1.01, 1.74
Detroit 0.47 0.15, 0.78
Minneapolis 0.63 0.06, 1.21
New Haven 0.27 —0.63,1.19
Pittsburgh 0.30 —0.05, 0.65
Seattle 0.14 —0.32, 0.61
Spokane 0.32 —0.20,1.21
All two-stage 0.35 0.21, 0.49
All single-stage 0.34 0.21,0.48

44 pg/m?®, and 45 pg/m?® and above. The days with concen-
trations below 15 pg/m?® served as the reference level.
Figure B.1 shows the results.

DISCUSSION

This analysis confirms the recent report from NMMAPS,
that when using parametric regression techniques to avoid
the problems in current GAM software, a significant asso-
ciation is still evident between daily PM; levels and daily
deaths. The new analyses extend that finding by a) using a
very different approach, indicating a robustness of the
results to type of modeling, and b) using an approach that
avoids modeling seasonal patterns, obviating arguments
about the complexity of those models.

The magnitude of the association for the 10 cities was
larger than the central estimate reported for 90 cities in the
NMMAPS study using natural splines (0.35% vs 0.21%).
This difference could be due to sampling variability, to the
choice of cities studied, or to the difference in the
methods. If it is due to the latter, the difference is most
likely the question of degree of freedom rather than the use
of natural splines per se because any sensitivity to knot
location should average out in a multicity study. The
NMMAPS study used a range of degrees of freedom to con-
trol for season but centered on 7 df/year. Most other
studies of air pollution and daily deaths have used 3 to
4 df/year (Goldberg et al 2001; Katsouyanni et al 2001). In
one of their sensitivity analyses, Dominici and coworkers
(2002) reported the effect of using 3.5 df/year in their
models. The effect estimate for PM; increased and
became indistinguishable from the results in this study.
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Figure B.1. Dose response between PM,, and daily deaths. Percentage
increase in daily deaths on days with PM;, concentrations in the ranges
of 156—-24 pg/m?, 25-34 pg/m?®, 3544 pg/m?, and 45 pg/m® and greater,
compared to reference days when concentrations were below 15 pg/m®.

Because simulation studies have demonstrated that the
control sampling strategy used in this analysis is adequate
to control for strong seasonal confounding, the lower
degree of freedom appears to be more appropriate for
spline models. The problems associated with overcontrol
of season have been described (Schwartz et al, elsewhere
in this report).

Like the NMMAPS analysis, this study focused on the
association of death with PM;, concentrations on the pre-
vious day. The choice of a one-day lag is not arbitrary,
however. Braga and coworkers (2001), in a Poisson regres-
sion analysis of these same 10 cities, fit models that simul-
taneously included PM;, concentrations on the day of
death and on the previous five days. These models were fit
for specific causes of death. The use of 6 correlated expo-
sure measures in the model led to imprecise estimates
within each city. Those estimates are unbiased, however,
and by combining estimates across the 10 cities in a com-
bined analysis, interesting patterns emerged.

For deaths from myocardial infarction, most of the effect
was for pollution on the day of death, with some effect at
lag 1, and nothing at longer lags. This is consistent with
the growing evidence that myocardial infarctions can be
acutely triggered by stressors (Mittleman et al 1993).
Indeed, a recent case-crossover analysis reported that
increases in particulate air pollution concentrations were
associated with an increased risk of death within hours of
exposure (Peters et al 2001).
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For all cardiovascular deaths, the association was more
evenly split between lags 0 and 1 of pollution, again falling
to zero after that. This suggests that other cardiovascular
events occur with a bit more lag. For deaths due to pneu-
monia and COPD, there was no effect at lag 0. The effect
was limited to exposures 1 and 2 days before the event.
This is consistent with observed associations between par-
ticle exposures and increases in inflammation and with
observations of Zelikoff and coworkers (1999). They
infected rats with Streptococcus pneumoniae and then
exposed them to concentrated air particles. The infected
rats had twice the bacterial burden and area of the lung
involved compared to rats breathing filtered air. The full
effect, was not seen for 48 hours, however.

Hence, a lag of one day between exposure and death rep-
resents the day of overlap between the different lags asso-
ciated with different causes of death. This overlap makes it
the most appropriate choice for a single-day model of all-
cause mortality. Because of the one-day-in-six sampling
frame for EPA monitors, the NMMAPS 90-cities study was
limited to choosing a single day.

The study of Braga and coworkers (2001) illustrates a lim-
itation of the case-crossover approach. Because of serial cor-
relation in exposure, if we wanted to simultaneously
examine the effects of multiple lags, we would have to push
our control dates further from the event date. As Bateson
and Schwartz (2001) have shown, that would entail some
risk of bias. Moreover, the reduced power (80% relative to a
Poisson model) of our approach would also start to become
more important in a model with six correlated exposure
variables. While this is a limitation of the case-crossover
approach, its advantages are that it controls for season
without using a complex model is more familiar to epidemi-
ologists, and easily allows the matched strata to be com-
bined across multiple studies. Using this approach, I have
confirmed that short-term changes in PM,, are associated
with short-term changes in daily deaths.
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BACKGROUND

Study of the short-term effects of air pollution
has relied heavily on observational findings from
time-series studies. In these studies, the associa-
tion between short-term changes in air pollution
and adverse health outcomes is typically assessed
using measurements of air pollutant concentra-
tions and corresponding counts of deaths or hos-
pital admissions. To minimize spurious, or biased,
associations between these time-varying measures,
various analytic methods are used to account for
effects of concurrent factors varying over time that
correlate with pollutant concentrations and with
daily counts of mortality and morbidity. When the
impact of these other factors are not controlled, the
effects attributed to air pollution may be actually
due to these other factors, including weather (typ-
ically temperature and relative humidity), as well
as unmeasured factors that also vary with time.

If unmeasured factors change slowly, they are
reflected in longer time trends than those that
appear to be relevant to short-term air pollution
effects. While many analytic methods are available
to control for such factors in time-series analyses,
the use of generalized additive models (GAMs*) has
been preferred since 1996. GAMs allow for smooth
functions of time to capture the slower fluctuations
in mortality or morbidity. They are also used to
allow for effects of some measured variables, such as
temperature, without the need to assume a specific
parametric model for the effect.

* A list of abbreviations and other terms appears at the end of the
Commentary.

Footnotes throughout this Commentary indicate sources in either
of the two revised analyses of NMMAPS 1II data (Dominici et al or
Schwartz et al) or in the original NMMAPS II Research Report 94
(Samet et al 2000).

During the review process, the Special Panel of the Health Review
Committee and the investigators had the opportunity to exchange
comments and to clarify issues in both the reports and in the
Commentary.

This document has not been reviewed by public or private party
institutions, including those that support the Health Effects Insti-
tute; therefore, it may not reflect the views of these parties, and no
endorsements by them should be inferred.

Health Effects Institute © 2003

Problems with the GAM module in commonly
used S-Plus statistical analysis software when
applied to time-series studies of air pollution came
to light in May 2002. First, Johns Hopkins
investigators who were conducting sensitivity
analyses on the National Morbidity, Mortality, and
Air Pollution Study (NMMAPS) dataset found that
default convergence criteria used in fitting a GAM
could lead to miscalculation of the estimates of
effect (Dominici et al 2002). Specifically, the
convergence criteria preprogrammed in the GAM
module of S-Plus prematurely terminated the
iterative process used in estimating the regression
coefficients. Further, investigators at Health
Canada independently became aware that a
programming shortcut used in calculating the
standard error for regression coefficients under-
estimated the true standard error (Ramsay et al
2003). Dominici and colleagues (2002) suggested
that the net effect of these problems was typically
to overestimate the effect estimate and to under-
estimate its standard error.

NMMAPS is arguably the most influential of
time-series studies of short-term changes in air pol-
lutant concentrations and the associations with mor-
tality and hospitalizations. This study was carried
out by two collaborating groups of investigators. Air
pollution and mortality in the 90 largest cities in the
United States was studied by investigators from
Johns Hopkins University. They made use of avail-
able air pollutant monitoring data to carry out city-
specific analyses in a standard manner. The
resulting estimates of city-specific effects were then
combined using hierarchical Bayesian methods to
estimate effects for regions of the country and for the
country as a whole. Investigators at Harvard Univer-
sity studied pollution and both hospitalizations and
mortality in smaller groups of 14 and 10 cities,
respectively (selected because of data available on
daily air pollution concentration and hospital
admissions). Both parts of NMMAPS made exten-
sive use of GAMs to control for time trends and
weather factors (Samet et al 2000).
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When the NMMAPS investigators identified problems
with applying GAMs, they responded rapidly by conducting
a series of revised analyses and sensitivity analyses to
address both the convergence criteria and the standard error
issues. Their approaches to uncovering the errors and
attempting to correct them are detailed in the accompanying
reports. This Commentary summarizes the methods used to
identify and quantify the problems and the results in both
parts of the study. An assessment of the methods and
revised findings is followed by conclusions and recommen-
dations of the Special Panel and thoughts on the impact of
problems associated with applying GAM software.

SUMMARY OF REPORTS

ANALYTIC METHODS

The investigators’ revised analyses addressed both prob-
lems with the use of GAMs (convergence and standard
error estimation), while purposefully leaving most other
aspects of the analyses unchanged. Specifically, Dominici,
Schwartz, and colleagues replaced the GAM functions
used in the previous analyses as follows:

1. Identical GAM functions with stricter convergence cri-
teria. These analyses were designed to correct the
GAM convergence problem while acknowledging that
the problem with standard error estimates remained in
the basic GAM program.

2. Generalized linear models (GLMs) with natural cubic
splines, using the same degrees of freedom (df) as
used in the previous GAM functions, rounded to
integer values. GLMs with natural cubic splines are
fully parametric because they can be expressed in
terms of a finite number of parameters representing
coefficients of the splines. These models should pro-
vide unbiased estimates of the standard errors and
should converge correctly. However, these GLMs
with natural cubic splines differ in other respects
from GAMs: their capacity to match fluctuations in
the relations between variables is not identical to that
of GAMs for the same number of degrees of freedom,
and their form depends somewhat on placement of
knots. In the analyses of data from the 90 cities, knots
were placed at equally spaced quantiles of the distri-
bution of explanatory variables.

Schwartz and colleagues also used two other methods:

3. Penalized splines. Using the same degrees of freedom
as in the original GAM functions, penalized splines
were used to smooth terms in one step rather than one
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covariate at a time until convergence is reached (as in
GAM). These curved functions are similar in concept
to GAM smooth functions, but they do not require the
same approximation to estimate standard errors,
which should thus be well estimated.

4. Case-crossover matching. At first sight, this analytic
design takes a different approach to controlling for
confounding. The case-crossover approach seeks to
control for fluctuations in mortality over time by
matching rather than by modeling the time effect
explicitly in a regression model. Specifically,
Schwartz and colleagues used this technique to assess
mortality from nonexternal causes in 10 US cities for
which daily monitoring of pollutants had been con-
ducted. They matched the particulate matter (PM)
level on the day before each death to the level on each
of a number of control days 7 to 15 days before and
after the death day. Using the case-crossover design,
Schwartz and colleagues compared two approaches to
obtain an estimate of mean effect across all cities: a
two-stage calculation of the mean from the effect esti-
mates for all cities; and a one-stage calculation using
data from all 10 cities included in a single model.’

As in the original report, Dominici and colleagues
applied the same model to each of the 90 cities included in
the evaluation of daily mortality. That is, the same vari-
ables and smoothing functions were used in each city to
control for potential confounding, while parameter esti-
mates and fitted smooth functions were allowed to vary
from city to city. Schwartz and colleagues conducted the
original and the revised analyses fitting a city-specific
model to each of the 14 cities included in the analysis of
hospital admissions data.

In these revised analyses Dominici and colleagues com-
bined evidence across cities using both the simpler DerSi-
monian and Laird (1986) and more complex hierarchical
Bayesian methods. Their revised analysis report provides
results only from the Bayesian methods; a comparison to
the simpler method was published earlier (Dominici et al
2002). They also give more information on heterogeneity
and on impact of modifying their model for heterogeneity.?

Schwartz and colleagues changed the method used for
this metaanalysis component, replacing the simple nonit-
erative method of DerSimonian and Laird (1986) by an iter-
ative maximum likelihood approach, as was recommended
in the original NMMAPS II Commentary. This method
would not change the city-specific estimates but could
change the estimates of means over the 14 cities and the

1. Schwartz et al, Appendix B.
2. Dominici et al, Table 2, Figure 11, and Appendix A.
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test for heterogeneity. In the current report, Schwartz and
colleagues present estimates of mean effects and their con-
fidence intervals (CIs) exclusively using random effects
models, whereas previously estimates from fixed and
random effects models were presented with the fixed
effects results highlighted.

RESULTS

Overall revised effect estimates using GAMs with
stricter convergence criteria and using GLMs with natural
cubic splines were generally lower than those obtained
from the original analyses with GAM and default criteria.
City-specific estimates obtained with GLM also had wider
confidence intervals. Nevertheless, small short-term asso-
ciations remained between the concentration of PM less
than 10 pm in aerodynamic diameter (PM;,) and nonex-
ternal mortality and between PM;, and mortality and mor-
bidity from cardiovascular and respiratory disorders.
Overall, similar but smaller effect estimates were obtained
for individual cities® and geographic regions.* The investi-
gators observed comparable patterns for lags 0, 1 and 2,
with the most consistent association found at lag 1 across
90 cities and less pronounced associations for other lags.?
Among the 10 cities for which daily PM;, concentrations
were available, the most consistent association with mor-
tality was reported for two-day mean and distributed lags.®
In both reports results did not change substantially when
copollutants were included in the models.”

Air Pollution and Daily Mortality in 90 Cities

Results for the 90 cities were based on available PM
monitoring data (collected every 6th day in most cities, but
nearly daily in 5 cities), 1987 to 1994 and reported as mean
change per 10 pg/m?® increase in PM;, concentration. In
the current report, Dominici and colleagues present a mean
change at lag 1 across all 90 cities of 0.27% (posterior
SE = 0.05) for total mortality obtained with GAM with
stricter convergence criteria and a mean of 0.21% (poste-
rior SE = 0.06) when obtained with GLM with natural cubic
splines. In contrast, the corresponding original estimate at
lag 1 was a 0.41% increase in total mortality (posterior
SE = 0.05). The mean change in total mortality for lags 0
and 2 also decreased substantially from 0.22% originally to
0.07% (posterior SE = 0.06) for lag 0 and from 0.28% orig-
inally to 0.10% (posterior SE = 0.06) for lag 2.8 The mean
estimate for mortality from cardiovascular and respiratory

Schwartz et al, Figures 14 and 15; Tables A.1, A.2, A.7-A.14, B.3.
Dominici et al, Figures 6, 7, and 9; Tables A.1 and A.2.

Dominici et al, Figures 2, 3, 8, 12, 14-16.

Schwartz et al, Table A.14.

Dominici et al, Figures 5 and 12—-16; Table A.1. Schwartz et al,
Figures 12—-13.
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causes across 90 cities was reported from the revised anal-
ysis only, 0.31% (posterior SE = 0.09) for lag 1,° 0.20%
(posterior SE = 0.09) for lag 2, and as expected, the lowest
estimate (0.13% [posterior SE = 0.09]) for lag 0.

Regional patterns within the 88 cities within the
contiguous states remained. The effect estimate for the
Northeast was the highest and the Upper Midwest estimate
was the lowest for total mortality and for mortality from
cardiovascular and respiratory diseases.'? The posterior
mean change for all regions was 0.25% (95% posterior
interval = 0.03, 0.48) for total mortality and 0.34% (0.10,
0.57) for cardiovascular and respiratory related mortality.'*
Regional posterior means for total mortality were 0.38% for
the Northeast (95% posterior interval = 0.01, 0.76) and 0.19%
(—18, 0.55) for the Upper Midwest region.'? Regional
posterior means for mortality from cardiovascular and
respiratory diseases were 0.50% (0.05, 0.94) for the Northeast
and 0.26% (—0.11, 0.63) for the Upper Midwest. Revised
posterior means for total mortality for lags 0 to 2 decreased in
all regions with the largest decrease in the Northeast.

Dominici and colleagues also conducted sensitivity
analyses varying the adjustment for confounding factors.
Increasing the degrees of freedom in the smooth functions
of time, temperature and dew point within the model
decreased the posterior mean for total mortality for lag 1:
0.32% when the degrees of freedom for variables were
halved and 0.17% when the degrees of freedom were dou-
bled.'* A similar pattern was reported originally.'3

Dominici and colleagues estimated the variability of city-
specific effect estimates across cities.'® They conducted a
Bayesian analysis with a two-stage hierarchical model and
estimated the marginal posterior distribution of the
heterogeneity parameter. They estimated less heterogeneity
in the effect of air pollution on mortality among cities than
reported earlier. The posterior mean of the between-city
standard deviation decreased from 0.112% (95% posterior
interval = 0.022, 0.298), obtained with default GAM, to
0.075% with GLM and natural cubic splines (95% posterior
interval = 0.022, 0.298).17 For the 88 cities, city-specific
posterior means calculated with two prior models yielded
similar mean relative risks from ambient PM; . The models
had different assumptions regarding the presence of

8. Dominici et al, Figures 2 and 3.

9. Dominici et al, Figure 4.

10. Dominici et al, Figures 6-9.

11. Dominici et al, Table A.1.

12. Dominici et al, Table A.1.

13. Dominici et al, Figure 8; Samet et al 2000, Figure 23, p 26.
14. Dominici et al, Figure 10.

15. Samet et al 2000, Figure A.1, p 53.

16. Dominici et al, Figures 11, A.1 and A.2, Tables A.1 and A.2.
17. Dominici et al, Table 2.
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heterogeneity across cities (model A: 0.25% [95% CI = 0.03,
0.47]; model B: 0.22% [0.02, 0.43]).

Dominici and colleagues present revised results for esti-
mates of effect for lags 0, 1 and 2 for ozone, sulfur dioxide
and nitrogen dioxide both without adjustment for other
pollutants and with adjustment for each of several copol-
lutants, including PM;,. These results changed little from
those reported originally except for being less precise.!®
Results for ozone by season demonstrated little change in
effect estimates in winter and summer, but a slight increase
from original estimates across all seasons.”

Morbidity Among Elderly in 14 Cities with Daily PM Data

Daily PM monitoring for an extended period between
1985 and 1994 (years for which hospital admission data
were also available) were available for 14 of the cities
included in the analyses of morbidity. Results for the
association of PM;, with hospital admissions for specific
diagnoses among those 65 years of age and older varied
according to diagnosis in the revised analyses. For hospital
admissions for cardiovascular disease (CVD), mean effect
estimates per 10 pg/m? increase in PM;, concentration
differed little comparing random effects model of GAM
with default and stricter convergence criteria, GLM with
natural splines, and models with penalized splines: default
GAM, b = 0.00106 [SE 0.00020]; strict GAM, b = 0.00111
[SE 0.00014]; GLM, b = 0.00111 [SE 0.00016]; penalized
spline, b = 0.00111 [SE 0.00015] when estimating the
unconstrained distributed lag.2° A moderate decrease was
found for the unconstrained distributed lag between
corresponding estimates for chronic obstructive pulmonary
disease (COPD) (default GAM, b = 0.00284 [SE 0.00134];
strict GAM, b = 0.00250 [SE 0.00066]; GLM, b = 0.00209
[SE 0.00074]; penalized spline, b = 0.00251 [SE 0.00067]).%"
The most substantial drop, however, was observed for
pneumonia when the data were analyzed with GLM with
natural splines (default GAM, b = 0.00205 [SE 0.00057];
strict GAM, b = 0.00160 [SE 0.00034]; GLM, b = 0.00001
[SE 0.00033]; penalized spline, b = 0.00080 [SE 0.00033]).22

When restricting the analysis to days with levels below
50 pg/m?3 PM,,, differences between the estimates from
original and revised analyses were smaller for a two-day
mean concentration. Comparing results reported from the
random effects model with GAM and default convergence

18. Dominici et al, Figures 5, 12, and 14—16; Samet et al 2000,
Figures 24-29, pp 27-28.

19. Dominici et al, Figure 13; Samet et al 2000, Figure 30, p 28.

20. Schwartz et al, Tables A.1, A.7, and A.11; Samet et al 2000,
Table D.5, p 67.

21. Schwartz et al, Tables A.2, A.8, and A.12; Samet et al 2000,
Table D.7, p 68.

22. Schwartz et al, Tables A.3, A.9, and A.13; Samet et al 2000,
Table D.6, p 67.
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criteria and GLM with natural spline, changes in estimates
of effect were moderate for cardiovascular admissions
(default GAM, b = 0.00144 [SE 0.00017]; GLM, b = 0.00131
[SE 0.00028]) and greater for admissions due to pneumonia
(default GAM, b = 0.00243 [SE 0.00065]; GLM, b = 0.00105
[SE 0.00051]).2°

The patterns for distributed lag effect estimates of PM;,
relative to the correlation of PM;, with temperature and
relative humidity remained the same for hospital
admissions for all diagnoses, showing no significant
increasing trend with increasing correlations. The
estimates, however, showed little change for COPD and
pneumonia but a slight decrease for CVD.?*

Results of tests for heterogeneity of city-specific esti-
mates for specific diagnoses conducted with natural splines
were similar to those reported in the original report.?® Evi-
dence for heterogeneity appeared somewhat less for hos-
pital admissions for pneumonia in the revised analyses.

Using the same approach as reported originally to control
for other pollutants, results comparable to those reported
earlier were obtained from analyses with natural spline and
penalized spline models for city-specific and mean effect
estimates for PM;, concentration relative to the ratio of
sulfur dioxide and ozone to PM;, for CVD and COPD; how-
ever, controlling for ozone increased the effect estimate
somewhat for hospital admissions for pneumonia.?®

As in the earlier data analysis, Schwartz and colleagues
conducted metaregression analyses using ecologic mea-
sures of social factors (such as college education, unem-
ployment, and poverty) to assess effect modification.?” The
effect estimate of ambient PM,, was greater among the less
educated, the unemployed, and the poor as shown by admis-
sions for CVD when data were analyzed applying models
with natural splines or penalized splines. Little effect modi-
fication had been observed with the original GAM analyses.
Further, each 5 percentage point increase among populations
in the above mentioned characteristics (especially unem-
ployment, poverty, and to a lesser extent, nonwhite race and
lack of college education) was associated with increases in
the effect estimates for CVD hospital admissions per
10 pg/m? increase in PM;, concentration (unemployment,
GLM, 0.78% change in effect estimate [95% CI = 0.42%,
1.14%]; penalized spline, 0.45% [95% CI = 0.01%, 0.88%]).
Changes in effect estimates for COPD and pneumonia rela-
tive to social factors were less consistent.?

23. Schwartz et al, Table A.10; Samet et al 2000, Table D.8, p 68.
24. Schwartz et al, Figure 11; Samet et al 2000, Figure 32, p 40.

25. Schwartz et al, Table 4; Samet et al 2000, Table 35, p 38.

26. Schwartz et al, Figures 12—13; Samet et al 2000, Figure 33, p 41.
27. Samet et al 2000, pp 34, 35, 38, 40.

28. Schwartz et al, Table 6; Samet et al 2000, Table 16, p 38.
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Mortality Among Elderly in 10 Cities with Daily PM Data

Ten cities with daily PM;, monitoring were included in
the original analyses of mortality data.?? Schwartz and col-
leagues conducted revised analyses with GAM with stricter
convergence criteria, natural spline models, and penalized
spline models. Neither of the latter methods is affected by
biased estimation of standard errors nor the iterative loop
(backfitting algorithm) associated with the GAM function.
The penalized spline method provides greater flexibility in
smoothing and depends less on arbitrary choice of knot
points. The mean effect estimates for unconstrained distrib-
uted lags decreased from the original 1.3% (95% CI = 1.0,
1.5) increase in daily deaths per 10 pg/m?® increase in PM,
to 1.1% (95% CI = 0.8, 1.4) with stricter GAM and to 1.0%
with penalized splines (95% CI = 0.8, 1.3) and GLM
(95% CI=0.7, 1.3).30

A case-crossover matched analysis compared revised
results for mortality to those obtained with another analytic
method.?! A two-stage analysis combined city-specific
effect estimates to obtain a common effect estimate across
cities, and a single-stage analysis assumed no heterogeneity
of effect among cities and combined matched sets from all
cities. The two-stage analysis estimated a 0.35%
(95% CI = 0.21, 0.49) increase in daily deaths per 10 png/m®
increase in PM;; results obtained from the single-stage
analysis [0.34% (95% CI = 0.21, 0.48)] were similar. (Results
for unconstrained distributed lags in the time-series anal-
yses were substantially larger.) To explore the dose-response
relation between PM and mortality, Schwartz and col-
leagues also compared the effect of different ambient levels
to an ambient level below 15 pg/m?. Compared with daily
deaths observed at this concentration, the percentage of
increase in daily deaths rose by 0.7 at PM;, concentrations
of 20 pg/m?® to approximately 1.2 to 1.3 at PM;, concentra-
tions of 30 and 40 pg/m? and to 2.6 at concentrations higher
than 60 pg/m?.

Schwartz and colleagues also presented results of other
sensitivity analyses and simulations to evaluate the effect
of varying adjustment for confounding factors.??

DISCUSSION OF ANALYTIC METHODS

The revised analyses of the NMMAPS data set provide
regression effect estimates and their variability, specif-
ically the standard errors of these estimates, using
different models and software programming. In addition,

29. Samet et al 2000, pp 54-61.

30. Schwartz et al, Tables 45 and A.14; Samet et al 2000, Table B.3,
Figure B.3.

31. Schwartz et al, Appendix B.

32. Schwartz et al, Figures 1-10.
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the sensitivity of the findings to modeling approaches and
to choice of parameters was explored.

Familiarity with modern statistical methods is needed to
fully appreciate the necessity for these revised analyses and
the grounds for uncertainty in interpreting the findings. Thus
this section attempts to provide a summary understanding of
the issues. The Detailed Discussion of Analytic Methods sec-
tion is for those who wish to understand more fully the
details underlying this summary and our conclusions.

Time is a surrogate measure for unknown or unmeasured
factors that affect daily mortality or morbidity (eg, hospital-
izations) and might also be associated with pollution. When
such time-varying factors are not taken into account, any
apparent associations with short-term changes in air pol-
lutant concentrations could be partly or entirely due to these
factors. Unfortunately, if control is too strict, which in this
case consists in modeling time effects too finely, the estimate
of air pollution effect can become imprecise and part of a
true pollution effect can be absorbed into the time effect.
This has been described as undersmoothing and corresponds
to using too many degrees of freedom in modeling time.
Alternatively, if control is not strict enough, effects due to
other time-varying causes may be incorrectly attributed to air
pollution. This can be described as oversmoothing and corre-
sponds to using too few degrees of freedom in modeling
time. One element of uncertainty is due to the fact that con-
trol for these other time-varying factors can never be com-
plete. The smaller the effects, and all would agree that air
pollution effects are small, the better the control for time
needs to be. Effects of weather (typically temperature and rel-
ative humidity in these studies) have similar potential pit-
falls when modeled in a fashion similar to time.

The most common approach is to model time explicitly,
as with Poisson regression models that are ubiquitous in air
pollution time-series studies. Many methods can be used to
model time in these models. Examples in the NMMAPS
analyses include GAMs with locally weighted smooth
(LOESS) functions, GLMs with natural cubic spline func-
tions, and penalized splines. Time can also be modeled
implicitly, as in the case-crossover approach used as a sensi-
tivity analysis for assessment of mortality. At first glance,
the case-crossover approach appears radically different from
the other approaches used; however, as discussed in the
Detailed Discussion of Analytic Methods, it may present
similar problems.

In general, approaches to determining the optimal degree
of control for time (degree of smoothing or degrees of
freedom) have often relied on measures of how well the
modeling fits the temporal pattern. The Akaike information
criterion (AIC) has been used as one such measure, but mea-
sures of goodness of fit in this setting do not help to deter-
mine the appropriate degree of control for time. Another
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DETAILED DISCUSSION OF ANALYTIC METHODS

ANALYTIC METHODS FOR MODELING CALENDAR
TIME AND AIR POLLUTION EFFECTS WITHIN CITIES

Both sets of investigators carried out the statistical analyses in
two stages. In the first stage, each city was analyzed independently
of the others to obtain a vector of parameter estimates, f3,
together with its variance-covariance matrix. The second stage,
effectively a metaanalysis, used these estimates as data and
focused on exploring heterogeneity of estimates and on esti-
mating a single value. This section of the discussion concentrates
on a specific aspect of modeling calendar time, which is the com-
ponent of the analysis most affected by the problems with
applying GAMs.

NEED TO INCORPORATE CALENDAR TIME
IN ANALYSES

In analyses of daily air pollution and mortality data, calendar
time itself is not a causal variable; calendar time is a surrogate
for other unmeasured (or unmodeled) variables that may have
causal effects. Three distinct types of such causal variables
should be distinguished:

e unmeasured confounders, variables which have a
causal effect on mortality and which vary in time
in a similar manner to air pollution,

*  causal variables, which vary systematically over
time but in @ manner unrelated to air pollution,
and

*  causal aspects of air pollution itself, imperfectly
captured by available measurements.

The first two variables necessitate some attempt to allow for
calendar time effects. First, if some statistical approach can be
used to control for calendar time, this will to some extent control
for unmeasured confounders (although such control cannot be
perfect). Second, even when they do not confound air pollution
effects, other variables may induce autocorrelations in mortality
and morbidity time series. Failure to take account of these can
lead to incorrect standard errors of effect estimates and incorrect
hypothesis tests. However; the third source of variation of mor-
tality with time—that due to unmeasured aspects of air pollution
itself—can lead to a negative consequence of controlling for cal-
endar time. In this case, controlling for time removes some of the
causal effect of air pollution in the analysis. Unfortunately, how-
ever, if we wish to address the possibility of confounding, this is a
price that must be paid as part of a complete analysis of the sen-
sitivity of findings to differing levels of control.

In the current analyses, control for calendar time was carried
out in one of two ways. In parametric and semiparametric

regression models, the time effect was incorporated in the
model as a smooth function. In contrast, the case-crossover
analysis attempted to eliminate time effects by matched choice
of control days. In the former approach, the effect of time is
modeled explicitly while, in the latter; the model is implicit. The
aim of both approaches is to simulate, in analysis, a natural
experiment in which air pollution level is varied while calendar
time is, as far as possible, held constant, in the hope that one will
also control for other unmeasured confounders. Clearly, how-
ever, calendar time cannot be held constant because to do so
would also hold the level of air pollution constant. Instead we
must control time within bounds and focus on short-term vari-
ations in air pollution levels. This adjustment can never repre-
sent complete control for confounding; only confounders which
vary more slowly than air pollution can be dealt with, and even
these are dealt with imperfectly. The judgment about how
closely time should be controlled is ultimately a scientific one
and cannot be made on purely statistical grounds.
Analytic methods may differ in three respects:

I.  the functional forms used to model time (and
temperature) effects (natural cubic splines, local
regression smoothers, etc),

2. the approach to statistical inference (maximum
likelihood, conditional likelihood, Bayesian
methods, etc), and

3. the numerical method for computing estimates
and standard errors of estimates.

In the following sections we try to clarify some of the similari-
ties and differences of approach. Most of this discussion focuses
on the problem of modeling time effects, but much of it applies to
the important issue of modeling temperature effects.

STRATIFICATION BY TIME

The simplest approach to control for confounding by time is
stratification. Although this approach has not been used in
either of the current analyses, the approach is useful for
introducing some issues that affect more complicated
approaches to the analysis.

Consider the total study period as being divided into a large
number of distinct intervals (strata), each consisting of a
number of consecutive days. A simple approach is to fit, in a
Poisson regression model, a stratum effect common to all days
within the same stratum. Then the effect of calendar time is
modeled as a step function. For the purposes of inference
about air pollution effects, the time stratum effects are so-
called nuisance parameters.



A Special Panel of the Health Review Committee

There are two well-known approaches to inference with this
model:

*  estimation of calendar time effects by maximum
likelihood using the Poisson regression approach,
or

*  elimination of these nuisance parameters by a
conditional argument. Here we argue
conditionally upon the time stratum within which
each death occurred, basing inference on the
conditional probability of the day at which death
occurred within the stratum.

These approaches are known to lead to identical large-sample
results. The latter approach yields the same likelihood as condi-
tional logistic regression of a matched case-control study:. It is for-
mally equivalent to a case-crossover analysis in which the case day
is the day in which the death occurred and all other days within
the stratum are control days. For estimating the remaining param-
eters in the model, including air pollution effects, the case-cross-
over analysis is equivalent to Poisson regression analysis and
avoids the estimation of a potentially large number of nuisance
parameters—the time stratum effects.

CHOICE OF STRATIFICATION INTERVAL AND
AUTOCORRELATION

The stratification approach provides some insight into the
important question of how finely the time effect should be mod-
eled. If the time strata are wide (a few degrees of freedom per
year), the effects of those confounders for which time is a surro-
gate will be imperfectly captured, resulting in residual con-
founding. Failure of the step function to capture the time effect
may be manifest as positive autocorrelation in the residuals. This
autocorrelation violates the assumption of independence of
errors made in the Poisson regression model and in the closely
related conditional logistic model. This violation in turn may lead
to incorrect standard errors in addition to that of bias due to
residual confounding.

As the stratification interval is reduced (more degrees of
freedom per year), we control for confounding by influences
varying on progressively shorter time scales. The finer the strat-
ification, the more closely we would expect to control for con-
founding. Note that fine stratification will inevitably lead to
negative autocorrelation of residuals of the observed death
rates from values fitted by the model. However, the penalty to
be paid is increased standard error of the estimates of pollution
effects; in the language of the case-crossover analysis, the con-
trol days are overmatched, leading to little or no variation
between case and control days.

A further consequence of very fine stratification is that
impact on effect estimates of deficiencies in air pollution data or
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incomplete modeling of the air pollution effect could be seri-
ously exacerbated, leading to substantially attenuated effect
estimates and loss of power: This attenuation will be particularly
acute if, as in the 90 cities, exposure data are mostly available
every six days.

Clearly, in deciding how closely to model time, we must strike
a balance among competing claims. This challenge besets all
methods of analysis.

NUMERICAL METHODS: DIRECT SOLUTION VERSUS
BACKFITTING

In Poisson regression analysis, simultaneous estimation of a large
number of time stratum effects with the regression parameters of
interest may not be feasible in many software packages, which typ-
ically use quasi-Newton methods to maximize the Poisson log-like-
lihood. An alternative is provided by a Gauss-Siedel method—an
iterative approach in which one alternates between

» fitting time stratum effects assuming that other
parameters are known and equal to their current
estimates, and

» fitting the remaining terms of the model assuming
time stratum effects are known and equal to their
current estimates.

A variation of this method is the backfitting algorithm pro-
posed by Hastie and Tibshirani (1990) in the more general con-
text of GAMs. In the context of the stratification (step function)
model for time effects, stratum effects would be estimated within
the iteratively reweighted least squares (IRWLS) fitting proce-
dure, in step (1), by calculating stratum means of working y values
after subtraction of the remaining fitted effects.

There are two disadvantages with the use of the Gauss-Siedel
approach to maximizing the Poisson likelihood:

*  This approach is known to be slow in converging
when second derivatives between the two sets of
parameters are appreciable (ie, when partial
collinearities exist between the design matrix for
time effects and design matrix for other effects).

*  The full inverse second-derivative matrix is not
calculated so that the standard errors of the
parameters of interest are not readily available.
Calculation of correct standard errors may
involve large matrices. Approximate methods are
available, but these may break down under strong
collinearity.

These difficulties are avoided by the conditional likelihood
approach because the large numbers of parameters representing
time effects are eliminated from the likelihood by the conditional
argument.
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EXTENDING MODEL FOR TIME EFFECTS

A clearly undesirable feature of the stratification approach is
that a step function is, at best, a crude approximation to the real
time course of rates—particularly if time strata are wide. The
methods used in the two current reports may be regarded as
useful elaborations of this simple stratification approach.

Dominici, Schwartz, and their colleagues used GAMs to
model both time and temperature effects. As indicated, GAMs
use the Gauss-Siedel numerical method, and the computations
are very similar to those outlined for simple stratification by time.
At each step, however; instead of estimating time effects by calcu-
lating stratum means of working y values within disjoint time
strata, local regression smoothers or smoothing splines are used.

Both reports consider the alternative of replacing the step
function model with a natural cubic spline model and a limited
number of knots. This remains a simple parametric Poisson
regression model and has two desirable features:

*  No computational problems arise in fitting all
parameters of the model simultaneously using
standard software.

* Inference (by maximum likelihood) is well
understood (at least when no autocorrelation
exists between errors) and standard errors of
parameters of interest are readily available.

However, dependence of results on the choice of knots that
define the spline functions is generally regarded as a less attractive
feature of this approach. For modeling temperature effects, the
placement of knots may be particularly influential and introduces
some danger of bias (Schwartz et al; Schwartz 2003). Afternative
approaches have therefore been explored. Schwartz and col-
leagues considered a more extensive set of alternatives including,
in addition to GAMs, random effects analyses of richly parameter-
ized spline models and a bidirectional case-crossover approach.
This latter method is approximately equivalent to use of a run-
ning mean smoother within the Gauss-Siedel iteration; it is not so
different from GAMs as might appear at first sight.

HOW MUCH SMOOTHING?

The problem that initially prompted this series of reanalyses
was the discovery by the Johns Hopkins and other investigators
(Dominici et al 2002; Ramsey et al 2003). Specifically, default
convergence criteria for the Gauss-Siedel procedure built into
S-Plus implementation of the GAM approach were not satisfac-
tory for the strong collinearities typically found in this applica-
tion. This means that some previously published estimates may
be incorrect. In consideration of this, however, two further
questions have recently received renewed attention: how much
smoothing is appropriate and how standard errors of parame-
ters of interest are estimated.

The first of these questions is more relevant to the important
question of how well we might have controlled for confounding
(ie, to the bias of effect estimates as estimates of causal effects).
As indicated previously, modeling time by too smooth a function
risks residual confounding and autocorrelation of errors.
Attempting to model the time effect too closely, however; may
attenuate the effect because some of the causal effect of air pol-
lution is taken into the time effect and eventually leads to
increased standard errors of air pollution effects estimated from
short fluctuations. This has been the subject of substantial discus-
sion in the time-series literature. Altthough the NMMAPS investi-
gators have been thoughtful in their approach to this question, it
continues to be a challenge in time-series studies.

For fitting GAMs, the degree of smoothing is chosen a priori,
much as we would choose a suitable interval for stratification by
time. Similarly, for parametric models using natural splines, the
amount of smoothing is decided a priori by the spacing of knots.
As is pointed out by Schwartz and colleagues and is further illus-
trated by our discussion of the stratification approach, we cannot
expect to estimate an appropriate degree of smoothing from the
data alone. Although the NMMAPS investigators do not in gen-
eral follow this approach, it is what is attempted in many analyses
of such data. In purely parametric approaches, the number of
knots (and hence parameters) can be increased in a step-wise
fashion and, analogously, the span of smoother within the GAM
approach can be progressively shortened. Either case requires a
decision on when an appropriate degree of smoothing has been
achieved. Some have advocated use of the Akaike information
criterion or other cross-validation methods to choose an optimal
degree of smoothing. But optimality is defined in such approaches
in terms of optimal prediction of a future dataset. This is different
from our concern, which is with adequate control for con-
founding to better inform judgments about causality. Others have
suggested choosing the degree of smoothing so that there is no
autocorrelation of errors. Positive autocorrelation indicates over-
smoothing, resulting in incomplete modeling of the time trajectory
and, therefore, inadequate control for confounding. Thus, fitting
time in too much detail may obscure some of the genuine effect
of air pollution. We nevertheless believe that a complete explo-
ration of confounding requires modeling time effects in as much
detail as is possible without substantial consequences for the stan-
dard errors of parameters of interest.

Beyond controlling for time, of particular interest is the ques-
tion of how fully to control for the potential effects of weather.
The NMMAPS investigators and others (Mackenbach et al 1993;
Samet et al 1997; Keatinge and Donaldson 2000; Ferreira Braga
et al 2001; Curriero et al 2002) have explored the potential con-
founding effects of weather in great detail and have found them
to be substantial if not controlled adequately. The current anal-
yses continue to include terms for weather, and the sensitivity
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analyses have further attempted to make estimates in the
absence of extreme weather days (eg, temperatures above or
below a certain point). Smaller estimates of effect result from the
newly revised analyses, however, and the possibility of subtler
effects of weather within the normal climatic ranges continues.
Thus, further exploration of weather effects is merited (for
example by considering correlated or cumulative effects of mul-
tiday temperature or humidity).

In general, GAMs are expected to give biased estimates of the
regression parameters of interest. The extent of bias reduces
with the roughness of the fitted curve, but with an attendant cost
in terms of standard errors and, possibly, in reduction of effect
due to imperfect exposure measurement. Thus, there continues
to be a need to further explore the sensitivity of conclusions to
this aspect of modeling.

RANDOM EFFECTS AND PENALIZED LIKELIHOOD

A recent development pointed out by Schwartz and col-
leagues is use of the random effects formulation for penalized
spline models. Here the general idea is to specify the time model
as a richly parameterized spline model. Typically, the method uses
many more knots than would be used in a conventional para-
metric analysis but many fewer than by use of the data points
themselves as knots (as is the case with the spline smoothers
offered in GAM). Inferential problems associated with specifying
too many nuisance parameters are avoided by introducing the
parameters that correspond to the coefficients of spline basis
functions as random effects in a mixed model. By use of the
Laplace integral approximation, maximum likelihood estimation
of fixed effects (including the parameters of interest) can be
approximated by the method of maximum penalized likelihood.
Because the number of additional parameters is not too large,
calculation of correct standard errors is not onerous. The trade-
off, however; between bias and variance of the air pollution effect
estimates with varying degrees of smoothness in GAMs applies
equally to this approach.

Some would claim that the attraction of the random effects
method is that the degree of smoothing is controlled by a
hyperparameter that, in principle, may be estimated from the
data using restricted maximum likelihood (REML). Again, how-
ever, the appropriateness of this hyperparameter to the task in
hand is open to question. The information available for estima-
tion of the hyperparameter that controls smoothness of the
time effect is drawn from overdispersion and autocorrelation of
residuals. While such aspects are relevant to the potential for
confounding, they should not alone determine how closely we
should control for time. In the current reports, Schwartz and
colleagues have not followed this course but instead have

chosen the hyperparameter on a priori grounds (based on con-
siderations of the corresponding effective degree of freedom).
They have used this approach simply as an alternative to GAM
that avoids the approximation of standard errors necessitated by
the Gauss-Siedel iteration. Our remarks concerning choice of an
appropriate degree of smoothing apply equally here.

A Bayesian argument can also be advanced for this mixed
model approach. The choice of a fixed value for the smoothness
hyperparameter can be taken as reliance upon a strong a priori
degree of belief. The strong interdependence between the mean
model for time effects and assumptions concerning autocorrela-
tion of errors have been highlighted by Davidian and Giltinan
(1995, p 133).

CASE-CROSSOVER ANALYSES

A considerable part of the report of Schwartz and colleagues
is taken up with a discussion of the case-crossover approach. As
indicated above, we are not convinced that this method repre-
sents a radically different approach from GAM. Indeed, if one
were to implement, in GAM software, a smoother which calcu-
lates a running mean of the observations at times t— 15, t— 14,...,
t=8,t—7tt+7t+8... t+ |3 t+ |4 then one would obtain
estimates which would not differ by very much from those from
the case-crossover analysis advocated by Schwartz and colleagues.
[t is not clear why this smoother should have better properties
than the local regression or spline based smoothers available in
other approaches. Further, as pointed out by other authors
(Lumley and Levy 2000), overlapping control days in this approach
means that the conditional likelihood is not a true likelihood and
that standard errors based upon the second derivative of the con-
ditional logistic log likelihood are likely to be incorrect.

Neither can this approach be justified by the idea of risk set
sampling (Navidi and Weinhandl 2002). Even if such methods can
be justified in terms of (possibly bias-corrected) estimating equa-
tions, development of methods for consistent estimation of stan-
dard errors of parameter estimates may be difficult because
overlapping periods will induce correlations between contribu-
tions to the pseudoscore function. Thus, the bidirectional case-
crossover approach may introduce as many problems as it solves.
Although Schwartz and collaborators have presented simulation
studies suggesting that such concerns are misplaced in the con-
text of these studies, and such simulations can be useful, simula-
tions are an imperfect substitute for sound theoretical results.
The case-crossover approach in which case-control sets are non-
overlapping strata of days (Levy et al 2001) has more appeal in
resolving the problem of standard error estimation (as described
under the Stratification by Time section) while retaining asymp-
totic theory that accompanies this standard model.
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criterion used to help determine the appropriateness of tem-
poral control is the absence of positive correlation over time
in the regression model errors (residual autocorrelation).
Nevertheless, while positive autocorrelation does indicate
when the control for time is not fine enough, a good case can
be made for controlling time more finely than indicated by
the disappearance of positive autocorrelation.

Alternatively, given the difficulty in predetermining
optimal control, NMMAPS investigators and others used a
range of smoothing and degrees of freedom to determine
the extent to which these alternative approaches changed
results. At the same time, as described in more detail in the
Detailed Discussion of Analytic Methods, further sensi-
tivity analyses are needed to evaluate effect estimates.

An additional important issue addressed by the revised
analyses was improved estimation of standard errors. Esti-
mation of standard errors is important not only for tests
and confidence intervals in city-specific analyses, but also
for later consideration of the heterogeneity of air pollution
effects among cities. If standard errors of city-specific
effect estimates are underestimated, tests are more likely to
indicate the presence of heterogeneity.

DISCUSSION OF RESULTS

INDIVIDUAL-CITY RESULTS

The revised 90 individual-city mortality results show that,
in general, the estimates of PM effect are shifted downward
and the confidence intervals are widened. One consequence
of this shift is that four more cities have effect estimates that
are negative or zero than was the case originally.

COMBINED RESULTS ACROSS CITIES

As in the original report, a second stage metaanalysis
was used to combine results on effect estimates of particu-
late and other pollutants on health outcomes across cities.
The question here is what impact the revised analyses have
had on conclusions: What is the mean estimated effect?
How much heterogeneity is there across cities? What are its
determinants?

Overall Mean Effect Estimate

Tightening the convergence criteria in GAM yielded a
substantially lower estimate of effect of PM;, combined
over all cities, and use of GLM with natural splines
decreased the estimate further. There remained a small,
but statistically significant, effect of PM,, at lag 1 on total
mortality, now estimated to be 0.21%, with a posterior
standard error of 0.06%. The Review Panel agrees with the
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investigators’ conclusions that the qualitative conclusions
of NMMAPS II have not changed although the evidence for
an effect of PM, at lag 0 and lag 2 is less convincing under
the new models. As reported before (Samet et al 2000), the
PM,  effect estimates did not decrease when copollutants
were introduced in the model.

A number of sensitivity analyses were undertaken in the
mortality study in NMMAPS II. Results from the GLM with
natural splines can be described broadly as not very sensi-
tive to changes in modeling assumptions. For example, the
degrees of freedom used for the smooth functions were
changed under several different scenarios by Dominici and
colleagues.®® All the point estimates are now lower, but the
pattern is similar. Making the time function smoother
somewhat increased estimates, but making them less
smooth or changing the smooth functions of weather did
not change estimates.

For the morbidity analyses by Schwartz and colleagues,
changes in methods for metaanalyses and changes in
smoothing methods were potential sources of differences
between new and previous combined results. This addi-
tional complexity aside, the Panel welcomed these changes.
The maximum likelihood estimate of between-city variance
used in the revised analysis of morbidity has better statistical
properties than the previous method-of-moments estimator.
The shift in emphasis from fixed effects means to those of
random effects models better reflects the uncertainty in these
means (although in the presence of heterogeneity, interpreta-
tion of the mean remains problematic).

Changes in the mean of 14 estimates of effect of PM;, on
morbidity are summarized in Table 2 of the Schwartz and
colleagues revised analysis. Here, results for the original
analyses are compared with the results for GAMs with
tighter convergence bounds (with changes in the method
of combining results across cities) and for GLM with nat-
ural cubic splines. Tightening the convergence decreased
the combined estimates of morbidity, and using the GLM
with natural splines yielded further decreased estimates.
The relative percentage decrease for the combined mor-
bidity estimates, about 8% to 10%, is smaller than the
decrease in mortality estimate reported by Dominici and
colleagues. There is still evidence of a small but statisti-
cally significant estimate of PM,; effect on morbidity from
COPD and CVD, based on the model that uses uncon-
strained distributed lags. (While several types of lag
models were investigated in NMMAPS II, members of the
original Special Panel for NMMAPS preferred uncon-
strained distributed lags.?* Much of the revised analysis
concentrates on this model as well.)

33. Dominici et al, Figure 10; Samet et al 2000, Figure A.1, p 53.
34. Samet et al 2000, p 74.
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The evidence for an effect of PM;, on pneumonia was
substantially weaker using the GLM with natural splines.
Schwartz and colleagues argued fairly convincingly to the
Panel that this is due to the particularly marked season-
ality of pneumonia deaths. The Panel was less convinced,
however, of the argument that this model is likely to have
led to error for this outcome. The dependence of results for
pneumonia on method of analysis in our view suggests
caution in interpreting them.

The new estimates using the penalized spline method of
fitting GAMs (as currently implemented in R) generally fell
midway between the new GAM estimates and the esti-
mates from GLM with natural splines. More research is
needed to understand the performance of the penalized
spline method with these types of data.

It is tempting to speculate that the less smooth time func-
tion in the mortality analysis (compared with the morbidity
analysis) was implicated in the greater change of the mean
effect estimate on reanalysis. Calculations for city-specific
CVD hospitalizations used smoothing on time varying from
less than 1 df/year to about 4 df/yr. The analyses also
showed a clear pattern of greater change in cities where
more degrees of freedom were used, but this pattern was not
present for COPD or pneumonia. Neither does the smooth-
ness of time function explain the sharply different results for
pneumonia compared with COPD and CVD. Further, the
mortality results for varied smoothness of time and weather
functions®® do not show an obvious pattern of change
depending on smoothness. Thus, if smoothness of the time
function is a determinant of impact of reanalysis, it is not
predominant, and other factors need to be considered.

Heterogeneity

Each city-specific estimate provides weak information
about the PM,, effect. If they are all measuring the same
unknown quantity, averaging across cities should allow a
more precise estimate of this quantity. Two ways of
assessing whether the data are compatible with this
hypothesis have been used in NMMAPS: (1) using a
chi-square test for the presence of heterogeneity and (2)
estimating heterogeneity as standard deviation of true city-
specific effects. Both of these techniques allow separation
of random variation between cities (expected by chance)
from true variation that is over and above chance. Indi-
vidual tests that are not significant or estimated standard
deviations that are small favor focusing on an overall
national mean of city-specific estimates. If individual tests
are significant or the standard deviations are large, inter-
pretation of the national mean becomes more problematic.

35. Dominici et al, Figure 10; Samet et al 2000, Figure A.1, p 53.
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How did the reanalyses change evidence for heteroge-
neity? For the mortality analysis, the 90 city-specific esti-
mates were different and usually smaller, and the
estimated standard errors were generally larger using the
GLM with natural splines. (This model was preferred for
standard error estimation at the time of this revised anal-
ysis because correct standard error estimates using GAM
were not yet available.) These results minimize the evi-
dence for heterogeneity among the cities. Specifically, the
new chi-square tests for heterogeneity are not significant,
and the estimate from the Bayesian two-stage model for
among-city standard deviation is lower, dropping from
0.112 (using the original GAM method) to 0.075 using
GLM with natural splines. More detailed sensitivity anal-
yses have been carried out to investigate sensitivity of the
overall national mean of the PM,, effect estimate to prior
specification of between-city variance.?® The Panel agrees
that the estimate of national mean PM,, effect is reassur-
ingly robust to specification of prior, but estimated hetero-
geneity is probably more sensitive to this. The estimated
between-city standard deviation of 0.07537 should be
taken as less certain than suggested by its credible 95%
interval of 0.021 to 0.198.

The revised analysis thus shows less evidence for heter-
ogeneity than the original analysis. This does not prove its
absence, however, because power of the test to detect het-
erogeneity is limited (and reduced by increased standard
errors in city-specific estimates) and because estimates of
standard deviation are imprecise. It is thus prudent to con-
sider interpretation in the presence of heterogeneity. Het-
erogeneity might be due to unmeasured confounding, in
which case the combined mean is only meaningful if this
confounding is assumed to be independent of pollution,
an assumption that cannot be tested by the data. Alterna-
tively, heterogeneity might be due to true variation in risk
increments per unit of PM; in different cities. In any case,
heterogeneity complicates interpretation of the overall
mean effect estimate.

The morbidity analysis yielded less information about
heterogeneity because only 14 cities were investigated.
Chi-square tests for heterogeneity are qualitatively similar
to the NMMAPS 1II results:*® some outcomes at some lags
show significant heterogeneity, while others do not. As
noted, the method of combining city-specific estimates
more appropriately incorporated uncertainty in the overall
mean effect estimate, with the result that its estimated stan-
dard errors are somewhat larger.

36. Dominici et al, Figure 11, Appendix.
37. Dominici et al, Table 2.
38. Schwartz et al, Table 4; Samet et al 2000, Table 35, p 38.
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CONCLUSIONS AND RECOMMENDATIONS

The NMMAPS investigators have conducted a range of
revised analyses, appplying alternative methods to correct
shortcomings in the S-Plus GAM programming. They are to
be commended for the way in which they brought these
issues to light, moved expeditiously to begin to address
them, and continue to conduct sensitivity analyses and
explore new analytic methods.

Based on its review of their revised analyses, and those
of others included in this Special Report, the Panel
reached the following conclusions:

e In general, although the estimates of effect decreased
substantially, the qualitative conclusions of the
NMMAPS have not changed as a result of revising the
analyses.

e While the alternative approaches used to model tem-
poral effects in the revised NMMAPS analyses
addressed the problems of obtaining incorrect effect
estimates and standard errors when using the prepro-
grammed GAMs software, at this time no models can
be recommended as being strongly preferred over
another for use in this context.

¢ Findings from the revised analyses have renewed
awareness of the uncertainties present in estimates of
short-term air pollution effects based on time-series
data.

e Although formal tests of PM effect across cities did not
indicate evidence of heterogeneity because of the gen-
erally large individual-city effect standard errors, the
power to assess the presence of heterogeneity was low.
The possibility of heterogeneity therefore remains.

e Since the appropriate degree of control for time in
these time-series analyses has not been determined,
the Special Panel recommends the following:

1. The impact of more aggressive control for time
should be explored and presented as sensitivity
analyses in future time-series studies (keeping in
mind that the decision of how much to control for
time cannot be made on purely statistical grounds).

2. Studies to evaluate bias related to the analytic
approach to smoothing and the degree of smooth-
ing should be encouraged.

e  That time effects are so strong that problems of
numerical convergence can have an appreciable effect
on estimates of PM effect testifies to the likelihood of
important time-dependent confounders of the relation.
Of such potential confounders, weather continues to be
a concern. Modeling the effects of weather and its
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relation to PM is a difficult problem that has been
addressed by the NMMAPS investigators and others.
The Panel concluded, however, that a more detailed
model for the effects of weather could minimize
sensitivity to the manner in which time is incorporated
into the analysis and that further work on modeling
weather-related factors is necessary.

IMPACT

NMMAPS

Problems with the application of GAM with default con-
vergence criteria and the programming shortcut in standard
error calculation will undoubtedly color interpretation of
time-series studies in the evaluation of air pollution health
effects. While estimates of effect are quantitatively smaller
than those originally reported, a statistically significant
overall effect estimate of PM;; on mortality remains. There-
fore, many conclusions that were initially drawn from
NMMAPS are to a large degree unchanged.

Further, because of the general increase in city-specific
standard errors in the revised results, the power to detect
heterogeneity among the city-specific effect estimates is
reduced. The city-specific results suggest some among-city
heterogeneity at face value, and four more cities have esti-
mates of effect that are either zero or negative in the revised
results. The tests provide less evidence for heterogeneity
than originally, however, and suggest that heterogeneity
can now be explained by chance.

AIR POLLUTION TIME-SERIES STUDIES

Compared to randomized experimental studies in which
the investigator controls the intervention, findings from
observational studies (such as time series) are always sus-
ceptible to uncontrolled biases and must therefore be inter-
preted cautiously. Observational air pollution and health
studies are no exception. Uncovering the problem of using
inappropriate default convergence criteria in the GAM
function has again highlighted potential confounding bias
in air pollution time-series studies. As in the analyses of
many observational studies, avoidance of confounding
bias typically entails appropriate measures of the con-
founding factors as terms in a regression analysis and cor-
rect specification of these factors. Determination of the
appropriate degree of smoothing time in air pollution time-
series studies has become a central issue. Overly aggressive
smoothing may allow residual confounding, while inade-
quate smoothing may allow some or all of the air pollution
effect to be incorporated into the smooth term. The best
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method for selecting the appropriate degree of smoothing
needed to control confounding bias remains to be deter-
mined. Furthermore, as is clear from the discussion of
approaches to handling time, there is no gold standard.
These issues introduce uncertainty into time-series
studies that has motivated ongoing work to gain much
needed insight. At this time, demonstration of sensitivity,
or lack of it, to a range of sensible smoothing choices
seems a reasonable approach.

STATISTICAL SOFTWARE

The problem in applying GAMs has sent a cautionary
note to investigators using statistical software (Dominici et
al 2002). Clearly, application of the S-Plus GAM function
underestimated standard errors in air pollution time-series
studies, and, until June 2002, the default convergence cri-
teria provided incorrect effect estimates. The nearly ubiqui-
tous use of GAMs in this setting reflects one of the hazards
of taking a standardized approach to analysis without veri-
fying the detailed functioning of a given application.
Clearly, widespread use by applied biostatisticians and epi-
demiologists, as in this case, does not guarantee that the soft-
ware or algorithm has no drawbacks. To their credit,
investigators at Johns Hopkins continued to test their
models and as a result brought the issue of the default con-
vergence criteria to light. Looking ahead, analysts need to
ensure that statistical software is appropriate for a given
application or to the use of different software (Lumley and
Sheppard 2003; Samet et al 2003). Again, the use of sensi-
tivity analyses is included among these cautions (in this
case addressing sensitivity, or the lack of it, in software
tuning parameters and their defaults).

IMPACT CALCULATIONS

Common practice has come to use effect estimates from
observational air pollution studies to calculate the impact
of air pollution on a large population such as that of the
United States. If effect estimates from the NMMAPS 90
cities mortality study were applied, the revised impact
would be approximately half of the estimated impact
derived using the original effect estimates. This example
reinforces the need to qualify estimates of impact by
emphasizing the assumptions and uncertainties on which
the estimates are based.

LONG-TERM EFFECTS STUDIES

Some have noted that the calculated health impact of
short-term air pollution concentrations based on time-series
studies is substantially smaller than the calculated impact of
long-term air pollution concentrations based on cohort
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studies (Pope et al 2002; Zeger et al, 2003). Because of the
vastly larger number of time-series studies performed, how-
ever, assessors of risk from air pollution have often been
more confident in their findings than in findings from the
few cohort studies. Because the problem with applying
GAMs has involved primarily the time-series studies and
correction of the problem has generally decreased estimates
of effect from these studies, more emphasis on cohort studies
can be expected. Further, uncertainty regarding the estimates
of effect from time-series studies can also be expected to
place additional emphasis on long-term air pollution
studies, on studies of natural experiments (the so-called
quasiexperimental studies), and on human experimental and
animal toxicologic studies.
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Acute Effects of Particulate Air Pollution on Respiratory Admissions

Richard W Atkinson, H Ross Anderson, Jordi Sunyer, Jon Ayres, Michela Baccini,
Judith M Vonk, Azzedine Boumghar; Francesco Forastiere, Bertil Forsberg,

Giota Touloumi, Joel Schwartz, and Klea Katsouyanni

ABSTRACT

The Air Pollution and Health: A European Approach 2
(APHEA2*) project investigated the short-term effects of
air pollution on daily mortality and hospital admissions in
29 European cities. Particulate matter less than 10 pm in
diameter (PM) and black smoke (BS) were investigated,
and the results have been published for all-cause mortality
and both respiratory and cardiovascular hospital admis-
sions. The original analyses, using locally weighted
smoothers (LOESS) within a generalized additive model
(GAM) framework, were conducted using S-Plus software
with default convergence criteria settings. The sensitivity
of the original respiratory admissions results to more strin-
gent convergence criteria and alternative smoothing func-
tions (natural splines with the same degree of freedom)
have since been investigated. For both PM,, and BS, the
results for hospital admissions for asthma in children and
adults, for chronic obstructive pulmonary disease (COPD),
and for all respiratory causes in persons over the age of 65
were insensitive to the specification of the convergence
criteria. Further, they were generally unaffected by the
choice of smoothing function used in GAM.

INTRODUCTION

The APHEAZ2 project investigated the short-term effects
of air pollution on daily mortality and hospital admissions
in 29 European cities. The project aimed to study the
consistency of air pollution effect estimates between cities
and, where significant heterogeneity between estimates
was found, to investigate whether this variability could be
explained by city-level factors such as population
structure, environmental conditions, and health of the

* A list of abbreviations and other terms appears at the end of the section.

This short communication report is part of an HEI Special Report, which
also includes 20 other reports, a section on NMMAPS I, two HEI Commen-
taries, and an HEI Statement. Please address correspondence about this sec-
tion to Dr Richard Atkinson, Dept of Public Health Sciences, St George’s
Hospital Medical School, London SW17 ORE, UK.

Health Effects Institute © 2003

population. Results for particles and daily mortality and
hospital admissions have been published [Katsouyanni et
al 2001; Le Tertre et al 2002; Atkinson et al 2001].

This short communication report has been prepared at
the request of the US Environmental Protection Agency
and the HEI Revised Analyses Review Panel. The request
followed concerns that default convergence parameters
commonly used in statistical software for GAM analyses
were not stringent enough. This report presents results of a
reanalysis of the particle and respiratory admissions data
[Atkinson et al 2001] taking into account the new recom-
mendations for convergence criteria. Results for PM; and
BS are presented here. A reanalysis of the data using nat-
ural cubic splines is also discussed.

METHODS

The statistical analyses followed a protocol devised by
the APHEA2 project members. For each outcome studied,
a GAM was constructed to model the daily number of
admissions as a function of seasonal patterns, meteorolog-
ical factors, and other explanatory variables. LOESS were
used to model the seasonal patterns found in the outcome
series and the nonlinear dependency of admissions on
temperature and humidity. Time series of respiratory
admissions can display episodic patterns, suggesting that
the amount of smoothing required varies over the duration
of the time series. This adjustment was accomplished by
using smoothing terms for specific time periods within the
overall series. Models were fitted using quasi-likelihood
assuming constant overdispersion over time, which
allowed a relaxation in assumptions for distribution of the
model residuals. The overdispersion parameter was esti-
mated using Pearson residual x2.

Serial correlation is often present in respiratory
admission time series; it is due to external confounding
factors such as seasonal patterns, weather, and respiratory
epidemics rather than an inherent property of the series.
The objective of modeling was therefore to account for the
confounding factors responsible for inducing this serial
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correlation without also removing the short-term effects of
air pollution on the outcome under study. The principal
tool used to assess this objective was the sample partial
autocorrelation plot. Respiratory admissions series have
strong serial correlation in the first few lags, so the
objective was to reduce the partial autocorrelation
estimates beyond the first few lags to nonsignificant
random variations about zero. Adjustments for the
remaining serial correlation were made using an
autoregressive error model. Assessment of the suitability
of the model was supplemented with time-series plots of
fitted values and Pearson residuals to ensure that no strong
seasonal patterns remained in the model residuals.

After controlling for seasonal and long-term trends in
the time series, weather terms were incorporated into the
model. The exact functional form of both temperature and
humidity as well as the lags of weather variables were
chosen using the Akaike information criterion (AIC) and
diagnostic plots. Generally, same-day and lagged tempera-
ture values were included, using either parametric or non-
parametric forms, according to the maximum reduction in
AIC achieved. The appropriate functional form of the
influenza variable(s) was also added to the model. Indi-
cator variables for the day of the week, public holidays,
school holidays (if appropriate), and any unusual events
were also included in the models.

This modeling procedure was carried out for each of the
outcome series (four disease/age groups and eight cities).
As a result, the core models for each time series were not
necessarily the same. The final step in the modeling proce-
dure was the addition of the pollutant, at which stage the
model diagnostics were rechecked. It has been shown that
log-transformed air pollution measures can give the best fit
in settings in which high levels of air pollution are present
(> 150 pg/m?® for particles). Because one aim of the study
was to investigate heterogeneity, only linear terms were
used for the pollutant measures. Thus the analyses were
restricted to days with particle levels of less than 150
ng/m3. For Milan and Rome, where only total suspended
particles (TSP) measures were available, the days for anal-
ysis were selected using rescaled TSP data (conversion
factor 0.75). PM, 3 measures available in Paris were consid-
ered to be close to PM;, measures.

The original analyses were conducted using S-Plus
software using the default convergence criteria. The
revised analysis used more stringent criteria (Table 1). In
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Table 1. Parameters Controlling Convergence: Default and
Revised, More Stringent Values

Parameter Default More Stringent
€ 1073 107
M 10 1000
Epf 1073 10”14
My, 10 1000

all other respects the models were identical to those used
in the original analyses. To further test the sensitivity of
the results to the method of analysis, the models for PM,
and BS were run again using natural cubic splines (the ns
function in S-Plus). The degrees of freedom used in the
splines were similar to those used for LOESS in the
original models and the more stringent convergence
criteria were also retained.

RESULTS

Tables 2 and 3 present the effects of changing the conver-
gence criteria used in the S-Plus software from the default
values to the more stringent values. For each outcome in
each city, the original and revised estimates are given for 10
pg/m? increments in PM;, or BS. The particle effect esti-
mates were largely unaffected by the more stringent criteria
used in calculation of the regression estimates and their
standard errors. This conclusion applies to each of the four
categories of disease and age studied. Results for BS
showed a similar pattern, excepting that the estimates for
asthma admissions in children 0 to 14 years of age were
slightly more variable than those of the other groups.

The sensitivity of results for PM; to the smoothing
function used (together with the more stringent conver-
gence criteria) is illustrated in Figure 1. Each graph pre-
sents the results from the original analysis and from the
revised analyses using the more stringent convergence cri-
teria and using natural splines rather than LOESS. The fig-
ures clearly show that the original results for PM,, are
mostly insensitive to both the convergence criteria and the
smoothing function used. The results for BS are similar
(data not shown).
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Table 2. Comparison of Results for PM;, Using Default and Revised Convergence Criteria

%" 95% CLP %°? 95% CLP % 95% CLP %°? 95% CLP
All Respiratory
Asthma COPD + Asthma Diseases
Outcome/City
or Country Model Ages 0—14 years Ages 15—64 years Ages 65+ years Ages 65+ years
Barcelona Original 2.7 -4.9 109 04 -—3.5 4.4 2.6 1.0 4.3 20 038 3.1
Revised 2.7 —4.9 10.9 04 -—-35 44 2.6 1.0 4.3 1.9 0.8 3.1
Birmingham  Original 2.8 0.8 4.8 2.5 0.1 4.9 0.5 —-1.4 2.6 0.9 -0.3 2.2
Revised 3.0 1.0 5.0 2.5 0.1 4.9 0.6 —-14 2.6 0.9 -0.3 2.2
London Original 0.6 —-0.8 2.0 1.4 —-0.1 3.0 0.3 —-0.8 1.5 0.4 -03 1.2
Revised 0.8 —0.6 2.2 1.3 —-0.2 2.8 0.3 —-0.8 1.5 04 -04 1.2
Milan Original 4.1 1.7 6.4 05 —-2.1 3.1 1.2 0.0 2.3 1.0 0.4 1.7
Revised 4.1 1.8 6.5 05 —-2.1 3.1 1.2 0.0 2.3 1.0 0.3 1.7
Netherlands Original -0.9 -2.1 0.4 04 -09 1.8 1.1 0.5 1.7 1.2 0.7 1.6
Revised —0.7 —2.0 0.5 04 -09 1.7 1.1 0.5 1.7 1.2 0.7 1.6
Paris Original 0.7 —-1.5 3.0 1.2 —0.7 3.2 -06 —2.5 1.3 -0.1 —-1.3 1.0
Revised 0.9 —1.4 3.2 1.2 —-0.8 3.2 —-0.5 —-24 14 -0.2 —-13 1.0
Rome Original 1.4 —3.2 6.1 1.4 —-3.0 6.0 0.7 —-1.1 2.5 0.8 —-0.5 2.1
Revised 1.4 —3.2 6.1 1.3 —3.0 5.9 0.7 —-1.1 2.5 0.8 —-05 2.1
Stockholm Original 1.7 —-6.0 10.2 54 —4.0 15.7 2.7 -15 7.1 1.7 —-1.2 4.7
Revised 1.7 —6.0 10.2 54 —4.0 15.7 27 —-15 71 1.7 —1.2 4.7
Summary Original 1.2 0.2 2.3 1.1 0.3 1.8 1.0 0.4 1.5 0.9 0.6 1.3
estimates Revised 1.5 0.1 2.8 1.0 0.3 1.8 1.0 0.6 1.4 1.0 0.7 1.3

3 Percentage change in mean number of admissions associated with increments in PM of 10 ng/m?®.

b 95% confidence limits.

Table 3. Comparison of Results for Black Smoke Using Default and Revised Convergence Criteria

%  95%CL® %%  95%CLP %% 95% CLP %2  95% CLP
All Respiratory
Asthma Diseases

Outcome/City or
Country Model Ages 0—14 years Ages 15—64 years Ages 65+ years Ages 65+ years
Barcelona Original 104 04 21.4 21 —-3.0 7.5 —-2.1 —-4.3 0.0 —-0.7 —2.3 0.9
Revised 10.4 0.3 21.4 20 —3.2 7.4 —=2.2 —4.3 0.0 —-0.7 —=2.3 0.9
Birmingham Original 2.0 —1.9 6.0 28 —-1.9 7.7 2.2 —1.7 6.2 29 0.6 54
Revised 25 —14 6.6 27 —1.9 7.6 20 —1.9 6.0 3.0 0.6 54
London Original 1.1 —-1.3 3.6 1.8 —0.9 4.5 04 —1.6 2.5 -1.1 —-2.4 0.3
Revised 1.2 —1.2 3.8 1.6 —1.0 4.4 0.5 —1.5 2.6 -1.0 —2.3 0.3
Netherlands Original 1.4 -0.4 3.3 -04 —22 15 0.7 —0.2 1.6 0.0 —0.7 0.7
Revised 1.8 0.0 3.6 -04 —-2.2 15 0.7 —0.2 1.6 —-0.1 —-0.7 0.6
Paris Original 09 -0.8 2.7 0.8 —-0.7 2.3 0.2 —1.3 1.6 05 —0.4 1.4
Revised 1.1 —-0.6 2.8 0.8 —0.7 24 0.2 —-1.2 1.7 04 —-04 1.3
Summary estimates  Original 1.3 0.3 24 0.7 —-0.3 1.8 0.2 —-0.7 1.1 0.1 —-0.7 0.9
Revised 1.6 0.5 2.6 0.7 —-0.3 1.8 04 —-03 1.0 0.1 —-0.7 0.9

a Percentage change in mean number of admissions associated with increments in PM; of 10 pg/m?®.

b 95% confidence limits.
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Figure 1. Sensitivity of results for PM,, for each city. From left to right, results from the original analyses are followed by the results using the more
stringent convergence criteria and then by the results using the more stringent convergence criteria together with the natural spline smoothers rather than
LOESS functions. Each result given represents the percentage change (+ 95% CI) as noted on y axes in the mean number of admissions associated with an

increase in PM; of 10 pg/m?®.

DISCUSSION

These analyses show that, in the case of hospital admis-
sions for respiratory diseases in European cities studied by
the APHEAZ2 project, the models are robust to the conver-
gence criteria used by the S-Plus software. The estimates
were not altered significantly when different criteria were
used and therefore the overall conclusions from the orig-
inal study [Atkinson et al 2001] remain unaltered. Further-
more, for these time series, the results for PM,, and BS
were not particularly sensitive to the smoothing function
(LOESS or natural cubic splines) used in the analysis.
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Size-Fractionated Particulate Mass and Daily Mortality in

Eight Canadian Cities

Richard T Burnett and Mark S Goldberg

ABSTRACT

A revised analysis of the association between size-frac-
tionated particulate mass and nonaccidental mortality over
the 11-year period 1986 to 1996 in eight Canadian cities is
reported. The original publication results (Burnett et al
2000) using nonparametric, locally weighted smoothers
(LOESS*) for time and weather variables using the S-Plus
default convergence criteria were replaced with natural
spline models. Eight smoothing selection strategies for time
were purposed. Particulate associations with mortality were
highly sensitive to the type of smoother and the amount of
smoothing. LOESS gave higher effect estimates than natural
splines. The association between coarse particulate mass
and mortality was more sensitive to the amount of temporal
smoothing than the fine particle-mortality association. Pos-
itive estimates of heterogeneity of particulate effect across
cities were observed using LOESS while negative estimates
of heterogeneity were obtained using natural splines. We
conclude that strategies need to be developed for selecting
the appropriate amount of smoothing of time in the conduct
of time-series health studies.

INTRODUCTION

This short communication describes the results of the
revised analysis of the association between size-fraction-
ated mass of particulate matter (PM, 5, PM;(_5 5, and
PM;,) and nonaccidental mortality in eight Canadian
cities (Montreal, Ottawa, Toronto, Windsor, Winnipeg,
Edmonton, Calgary, and Vancouver) from January 1, 1986
to December 31, 1996. The paper describing the original
analysis was published previously (Burnett et al 2000).

* A list of abbreviations and other terms appears at the end of the section.

This short communication report is part of an HEI Special Report, which
also includes 20 other reports, a section on NMMAPS 1II, two HEI Commen-
taries, and an HEI Statement. Please address correspondence about this sec-
tion to Dr Richard T Burnett, Biostatistics & Epidemiology Division, Health
Canada, 4th floor, 2720 Riverside Drive, Ottawa ON, K1A 0K9 Canada.

Health Effects Institute © 2003

The particulate and mortality data are identical to the orig-
inal publication.

ORIGINAL STUDY METHODS AND RESULTS

The majority of results in the original publication used a
time-series statistical approach to linking daily variations
in mortality with daily variations in air pollution by
removing temporal trends in the mortality, particulate and
weather data prior to linking these temporally filtered vari-
ables together. This approach removes the potentially con-
founding effects of time from each of the time series prior
to examining the effect of air pollution on mortality. We
reported a 1.9% (¢ = 2.8) change in daily mortality for a
25.9 ng/m?® change in PM,, 1.6% (t = 3.1) for a 13.3 pg/m?®
change in PM,, 5 and 0.9% (¢ = 1.4) for a 12.6 pg/m? change
in PM;q_, 5 in Table 8 of the original publication. These
effects are based on particulate measurements recorded on
the day prior to death. The model for mortality contained a
LOESS smooth of day of study with a 90-day span that was
common to all eight cities. This span was selected to max-
imize the minimum type I error rate or P value of the Bar-
tlett test (Priestly 1981) for white noise residuals among
the eight cities. This approach was selected in order to
ensure as best as possible that we were controlling for tem-
poral trends in the mortality time series in each city yet
allowing a common span among all cites.

All days of observation were included in the mor-
tality—time model despite the fact that most of the particu-
late measurements were recorded on a six-day sampling
schedule. Time trends in particles and weather were also
removed from these series using a 90-day span LOESS.
The temporally filtered residuals from the mortality, air
pollution and weather time series were then linked using a
linear regression model combining information across all
cities. Daily average temperature and maximum change in
barometric pressure within a day recorded on the day of
death were selected as the best weather predictors based
on the Akaike information criterion (AIC) coupled with a
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stepwise regression procedure that included daily average
temperature, daily average relative humidity, and baro-
metric pressure lagged 0 and 1 days. A common weather
model was selected for each city. Here, the potentially
nonlinear associations between weather and mortality
were described by LOESS with a 0.50 span.

A secondary analysis was also performed using a model
approach that is more common in the current literature. In
this approach, time, weather, and air pollution were mod-
eled together, thus allowing the temporal cycles in each
time series to compete in predicting daily mortality. Air
pollution estimates based on this coadjustment approach
permit information from frequencies lower than day to
day, such as subseasonal or seasonal, to be included in the
analysis. The results from this coadjustment analysis
approach were 2.1% (t = 3.7) for a 25.9 pg/m? change in
PM;y, 1.9% (t = 4.2) fora 13.3 ng/m?® change in PM,; 5 and
1.2% (t = 2.3) for a 12.6 pg/m® change in PM;q_y 5.

Particulate effect estimates based on the prefiltering
approach were smaller than those estimates based on the
coadjustment approach, suggesting that temporal cycles in
the mortality and air pollution data were positively con-
tributing to the risk estimate.

REVISED ANALYSIS METHODS

Revised analyses of these data will be conducted in two
phases. All revised analyses used the coadjustment
approach because this approach is in current favor and
thus our results will be comparable with other researchers.
In the first phase, the influence on particulate effect esti-
mates of adding indicator variables for day of the week was
examined. Mortality rates vary little by day of the week,
but there are fewer deaths on Sundays. Most other
researchers now control for day of the week effects.

The influence on effect estimates of the convergence
criteria used in S-Plus generalized additive model (GAM)
routines was also examined. The default criteria consist of
four components: a relative difference in parametric
parameter estimates between local scoring iterations of
107 3; a difference in the residual sum of squares between
backfitting iterations of 107 3; maximum iterations for the
local scoring algorithm of 10; and maximum iterations for
the backfitting algorithm of 10. These criteria are denoted by
(1073, 1073, 10, 10). Recognizing concerns that this set of
convergence criteria may not always be strict enough to find
the maximum likelihood estimate, however, Dominici and
colleagues (2002) suggested much stricter criteria (1
10~ 15, 1000, 1000) that was used in this revised analysis.

0—15,
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The first phase of the revised analysis consists of deter-
mining the pooled estimate of the air pollution effect
among the eight cities assuming that time (f) and weather
variables were modeled by LOESS functions within the
GAM framework. The model for the expected number of
deaths at time ¢ in the jth city, y;;, has the form

E{Y tj} = exp(lo(t,90/4018)
+lo(temp;,0.5) (1)
+lo(pry;,0.5)
+B;APy) ,

where lo denotes the LOESS function and temp, pr, and
AP denote daily average temperature, change in baro-
metric pressure, and air pollution, respectively. The quan-
tity 90/4018 defines the span of LOESS, which is given by
90 days divided by the length of the time series (4018
days). The air pollution effect estimate for the jth of 8
cities, Bj, is assumed to be nqrmally dif.tributed with
expectation B and variance 6+v;, where v;is the estima-
tion variance of [.3>]- and 6 is the variance of the true air pol-
lution effect between cities. The estimate of the pooled air
pollution effect among cities is given by

1\ 1 R
p= (2?=1(é+;f] 1) x 211[6 =vj) 7B

where § is the maximum likelihood estimate of 8. The esti-
mate of the standard error of 8 is given by
N -1/2
8 A o~ -1
(Zj:1(9+ vij) )
Four models for each of PM, 5, PM;_, 5, and PM;, were
considered, resulting in 12 model runs: default and stricter

convergence criteria; with and without day-of-the-week
(DOW) indicator variables.

In the second phase of the revised analysis, natural
spline models were used to capture the potentially non-
linear effects of time and weather on mortality in place of
the LOESS. The natural spline models are defined by the
degree of freedom, which is given by the number of knots
plus two. The knots are placed evenly throughout the dis-
tribution of the variable modeled. Natural spline models
have been shown to perform well in time-series mortality
studies in terms of bias in the air pollution effect estimate
and the corresponding standard errors compared to LOESS
and nonparametric spline smoothers (Dominici et al 2002;
Ramsay et al 2003).
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It is difficult to define an equivalent amount of
smoothing produced by the natural spline compared to
LOESS. Both have a concept of degree of freedom, but non-
parametric smoothers are defined in a manner that fit the
data better than parametric functions like natural splines
for the same degree of freedom. The LOESS function was
therefore not replaced with a natural spline with the same
degree of freedom. Instead, the same modeling approach to
select the degree of freedom for the natural splines was
used as the LOESS. Namely, maximize the minimum P
value of the Bartlett test for white noise among the eight
cities. Several choices of the number of knots were consid-
ered, one knot per 1, 2, 3, 6 and 12 months. This approach
resulted in a selection of one knot for every 2 months. Nat-
ural splines terms for temperature and pressure using 2
knots or 4 degrees of freedom were included in the model.
A 0.50 span resulted in approximately 2 degrees of
freedom for both the weather variables. All natural spline
models contained day-of-the-week indicator functions.

The degree of complexity of the time model needed to
drive the model residuals to white noise was much greater
when all days of observation were included in the anal-
ysis. However, far fewer degrees of freedom were required
to produce white noise residuals when using only those
days in which particulate measurements were examined.
The every sixth day mortality data displayed more variable
temporal structure than the every-day data. The lack of
consistency in temporal structure led to a model with
fewer degrees of freedom. That is, the degree of freedom
needed to adequately fit the temporal trends in daily mor-
tality data clearly overfit the six-day mortality data. These
models were rerun with days for which particulate data
were available.

Alternate methods of model selection were considered.
The AIC was determined for each model in addition to the
sum of the AICs among the 8 cities for time degrees of
freedom equivalent to a knot per 1, 2, 3, 6, and 12 months.
The knot per month value that resulted in the smallest sum
of AICs across cities was selected. Two modeling criteria
for selecting a common number of knots among all cities
were thus considered.

Finally, a knot selection method was examined that
allowed the number of knots to vary by city. There, the
number of knots was determined for each city separately
based on the white noise or AIC criteria. Thus, eight dif-
ferent sets of analyses based on three factors were exam-
ined: Common versus City-Specific; AIC versus White
noise; and All Days versus Particulate (PM) Days.

REVISED ANALYSIS RESULTS

The pooled estimates (X 1000) of PM; 5, PM;4_5 5, and
PM, ¢ associations with nonaccidental mortality among the
eight cities and the corresponding ¢t values (ratio of effect
estimate to standard error) are given in Table 1 for models
using LOESS by inclusion of day-of-the-week indicator
variables and convergence criteria. These values are
approximately the percentage of change in daily mortality
associated with a 10 ng/m?® change in mass. The size of the
pooled effect estimates increased after including day of the
week while the estimates decreased when the stricter con-
vergence criteria were used.

The magnitude of the association between PM, 5 and
mortality varied by the number of knots of the natural spline
for time: 1.17% (t = 3.12) for knot/year, 1.10% (t = 2.28) for
knot/6 months, 0.86% (t = 2.14) for knot/3 months, 0.85% (t
= 2.07) for knot/2 months, and 0.75% (¢t = 1.72) for
knot/month. However, a greater variation in effect estimates
was observed for PM;g_j 5: 1.53% (t = 3.42) for knot/year,

Table 1. Pooled Estimate Among Eight Cities of
Percentage Change in Daily Mortality Associated with a
10-pg/m° Change in Size-Fractionated Particle Mass
Measured on the Day Prior to Death. Pooled Estimate
Obtained Using LOESS for Time with 90-Day Span, and
LOESS for Temperature and Maximum Change in
Barometric Pressure, with a 0.5 Span by Convergence
Criteria and Inclusion of Day-of-the-Week Indicator
Variables. Ratio of Pooled Estimate to Standard Error (¢
value) Given in Parenthesis.

Pooled Percentage of Change (f value)

Default Criteria® Strict CriteriaP

Without With Without With

Pollutant DOW DOW DOW DOW
PM2.5 1.35 (4.17) 1.62 (3.83) 1.11 (3.43) 1.44 (3.14)

PMg_55 0.91 (2.30) 1.00 (2.45)
PMy, 0.80 (3.69) 0.87 (3.92)

0.75 (1.89) 0.83 (2.04)
0.64 (2.95) 0.70 (3.15)

4 Default convergence criteria: relative difference in parametric
parameter estimates between local scoring iterations of 1073; a
difference in the residual sum of squares between backfitting
iterations of 10~ 3; maximum iterations for the local scoring
algorithm of 10; and maximum iterations for the backfitting
algorithm of 10.

b Strict convergence criteria: relative difference in parametric
parameter estimates between local scoring iterations of 10715 a
difference in the residual sum of squares between backfitting
iterations of 10~ 1°; maximum iterations for the local scoring
algorithm of 1000; and maximum iterations for the backfitting
algorithm of 1000.

87



Short Communication Report

1.16% (t = 2.52) for knot/6 months, 0.82% (t = 1.69) for
knot/3 months, 0.73% (¢t = 1.46) for knot/2 months, and
0.49% (t =0.91) for knot/month. These results suggest that
the air pollution association with mortality is sensitive to
the amount of temporal smoothing. Thus strategies are
needed to select the amount of smoothing using some
clearly defined criteria.

The pooled effect estimates for the three particulate pol-
lutants are given by the eight knot selection strategies in
Table 2. A knot per 2 months was selected based on both
White noise and AIC for the All Days data under the
Common model. This analysis strategy is identical to the
one used in the original publication except natural splines
replaced LOESS. The air pollution effect estimates based
on natural splines were smaller than those based on
LOESS, even for the stricter convergence criteria (0.85% vs
1.44% for PM, &, 0.73% vs 0.83% for PM_, 5, and 0.53%
vs 0.70% for PM,).

The City-Specific knot selection strategy yielded some-
what smaller effect estimates than the Common strategy
while the White noise strategy generally produced smaller
effect estimates than the AIC strategy. Larger differences in
effect estimates were observed for the PM Days compared
with the All Days strategy.

DISCUSSION

The association between size-fractionated particulate
mass and nonaccidental mortality in eight of Canada’s
largest cities over the 11-year period from 1986 to 1996
was sensitive to the method of statistical analysis. Non-
parametric LOESS yielded larger risk estimates than para-
metric natural splines. Nonparametric spline smoothers
gave intermediate risk effects (results not shown). The risk
estimates generally varied inversely with the number of
knots used to define the natural splines of time. PM, 5
effects were less sensitive to the number of knots than the
effects of PM;y_, 5 on mortality. This result was due to the
fact that the nonlinear correlation, or concurvity, between
the modeled temporal trends in mortality and mass was
stronger for PM;,_, 5 (average correlation among cities of
—0.45) compared to PM, 5 (—0.36). Thus separating the
confounding effects of time and PM;,_, 5 was more diffi-
cult than time and PM, 5 in this study.

Positive estimates of heterogeneity of particulate
effect, §, across cities were observed using LOESS while
negative estimates of heterogeneity were obtained using nat-
ural splines. This finding was due to the reduction in effect
estimate using natural splines that resulted in smaller

Table 2. Pooled Estimate Among Eight Cities of Percentage Change in Daily Mortality Associated with a 10-pg/m?
Change in Size-Fractionated Particle Mass Measured on the Day Prior to Death. Pooled Estimate Obtained by Selecting
Degrees of Freedom (df) for Natural Spline of Time (Common/City-Specific, Analysis Days, and Fitting Criteria). Model
Also Includes Natural Spline of Daily Average Temperature with 4 df and Maximum Change in Barometric Pressure
Within a Day with 4 df. Ratio of Pooled Estimate to Standard Error (f value) Given in Parenthesis.

Percent Change in Mortality
for 10 pg/m?® Change in Mass

Common/ Analysis Fitting

City Specific? DaysP Criteria® PM, 5 PMig_25 PM,
Common (knot/year)d PM days AIC 1.17 (3.12) 1.53 (3.42) 0.95 (3.75)
Common (knot/6 months) PM days White noise 1.10 (2.89) 1.16 (2.52) 0.80 (3.10)
City specific PM days AIC 0.90 (2.34) 1.42 (3.13) 0.81 (3.12)
City specific PM days White noise 1.05 (2.78) 1.21 (2.65) 0.80 (3.11)
Common (knot/2 months) All days AIC and white noise  0.85 (2.07) 0.73 (1.46) 0.53 (1.88)
City specific All days AIC 0.75 (1.82) 0.78 (1.58) 0.50 (1.77)
City specific All days White noise 0.75 (1.81) 0.58 (1.15) 0.43 (1.51)

2 Common: equal degree of freedom of natural spline model for time for each city; City specific: degree of freedom of natural spline model for time

varies by city.

b PM Days: degree of freedom of natural model for time based on days in which particulate data was available; All Days: degree of freedom of natural model

for time based on all days of observation (4018 per city).

¢ AIC: Akaike information criterion; white noise: model residuals are tested for evidence that they depart from white noise using the Bartlett test.

d Frequency of knot placement for natural splines when Common model is used.

88



RT Burnett and MS Goldberg

observed variation in the effect estimates, f% j»Across cities in
addition to the increased within-city estimation error (¥ 1-)
compared to models using LOESS for time and weather.
Evidence from this study is insufficient to conclude that
the particulate association with mortality varies across
Canadian cities.

Fewer knots were required to adequately model the tem-
poral variation in mortality when days with particulate
data were examined compared to all days of observation of
deaths due to the difficulty in modeling small temporal
changes within a season using the sparser dataset. Two
knots per year were adequate to model a seasonal cycle in
mortality with a winter peak and a summer trough. These
seasonal cycles could be identified with the PM Days data,
but the data were too sparse to recognize subseasonal vari-
ations. However, such variations exist in the daily mor-
tality time series as evidenced by the need for more knots
to model time in the daily data (knot/2 months). Some pos-
itive correspondence between these subseasonal varia-
tions in mortality and subseasonal variations in particulate
matter was shown by the larger effects observed when a
knot/12 months was used versus a knot/2 months.
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ABBREVIATIONS AND OTHER TERMS

AIC Akaike information criterion
DOW day of the week
GAM generalized additive model
LOESS locally weighted smoothers
PM particulate matter
PM, 5 PM 2.5 pm in median aerodynamic
diameter
PM;, PM 10 pm in median aerodynamic
diameter
PMig_25 PM 10-2.5 pm in median aerody-

namic diameter
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Shape of the Exposure—Response Relation and Mortality Displacement

in the NMMAPS Database

Francesca Dominici, Michael Daniels, Aidan McDermott, Scott L Zeger,

and Jonathan M Samet

ABSTRACT

This section summarizes the revised results of three
analyses of the National Morbidity, Mortality, and Air Pol-
lution Study (NMMAPS*) data for particulate matter (PM)
less than 10 pm in aerodynamic diameter (PM; ) and mor-
tality: (1) estimation of shape of the exposure-response
relation and location of any threshold among the 20 largest
US cities (1987-1994); (2) estimation of regional and
national average exposure-response curves among the 88
largest US cities (1987—1994); and (3) frequency and time-
domain log-linear regression analyses to assess the extent
of mortality displacement in Philadelphia (1974-1987).
These analyses did not show any substantial differences
from previous analyses.

INTRODUCTION

Recent work by Dominici and colleagues (2002¢) and
Ramsay and coworkers (2003) called for caution in use of
the S-Plus software for fitting generalized additive models
(GAMs) (Hastie and Tibshirani 1990) to estimate relative
rates of mortality and morbidity in time-series studies of air
pollution and health. When data to which GAMs are
applied have small estimated regression coefficients (rela-
tive to the effects of confounders) and when confounding
factors are modeled with nonparametric smooth functions,
the defaults in the S-Plus software (version 3.4) for GAM do
not assure convergence of its iterative estimation procedure
(Dominici et al 2002c; T Hastie, personal communication,
2003). Thus, biased estimates of the regression coefficients
and their standard errors can result. Independently,
Ramsay and coworkers (2003) noted that the S-Plus GAM

* A list of abbreviations and other terms appears at the end of the section.

This short communication report is part of an HEI Special Report, which
also includes 20 other reports, a section on NMMAPS I, two HEI Commen-
taries, and an HEI Statement. Please address correspondence about this sec-
tion to Dr Francesca Dominici, Department of Biostatistics, Bloomberg School
of Public Health, Johns Hopkins University, 615 N Wolfe St, Baltimore MD
21205-2179.

Health Effects Institute © 2003

function uses a computational approximation that, when
the air pollution variable correlates with the nonlinear
functions included in the model, can underestimate stan-
dard errors of the relative rates. (See also Chambers and
Hastie [1992] pages 303—304 and commentaries by Lumley
and Sheppard [2003] and Samet et al [2003].) Standard
errors are underestimated even when more stringent con-
vergence parameters are used.

Recently, some progress has been made to overcome lim-
itations of the S-Plus GAM software. First, default conver-
gence parameters of the S-Plus GAM function (version 6.1)
have been made more stringent with a change from 1073,
the default, to 10”7, Second, a revised version of the S-Plus
GAM calculates asymptotically exact standard errors of the
relative rate estimate (see Dominici et al [2002b] for
reference and http:// biosun01.biostat.jhsph.edu/~fdominic
/research.html for software). In this short communication,
we present findings of new analyses of three NMMAPS data-
bases: (1) estimation of a national average dose-response
curve for the largest 20 US cities (Daniels et al 2000); (2) esti-
mation of a national average dose-response curve for the
largest 88 cities (Dominici et al 2002a); and (3) fre-
quency- and time-domain log-linear regression to assess
the extent of mortality displacement (Zeger et al 1999).
All other reanalyses of the NMMAPS Study are summa-
rized in a separate report to the Health Effects Institute
submitted in October 2002 (Dominici et al, this volume).

METHODS

ESTIMATION OF DOSE RESPONSE

In the original NMMAPS analyses (Daniels et al 2000;
Dominici et al 2002a), we extended the city-specific
regression model (Dominici et al 2000) by assuming that
the expected value of mortality is a natural cubic spline of
air pollution adjusted by several confounders. The con-
founders included smooth functions of time and tempera-
ture, originally modeled as smoothing splines (Kelsall et al
1997; Dominici et al 2000). Within each city, the shape of
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the exposure-response curve was estimated by using the
GAM software with default convergence parameters.

Here we re-estimate the shape of the exposure-response
curve using the same approach as in Daniels and associ-
ates (2000) and Dominici and colleagues (2002a), but mod-
eling the smooth functions of time and temperature as
natural cubic splines and using generalized linear models
(GLM; McCullagh and Nelder 1989) in S-Plus.

More specifically, to estimate the shape of the exposure
response, we modeled the logarithm of expected value of
daily mortality (E) as a smooth function of air pollution
after adjusting for other confounders:

E(Y;)= exp{S(Xt, knots = v)+ confounders} (1)

where X; and Y; are the air pollution and mortality time
series, and S(.,.) is a natural cubic spline with fixed
boundary knots, with knots (k) at locations v = (vq,...,v;). In
addition, to examine whether the health effects of air pol-
lution are negligible below some level, a linear threshold
model can be used:

E(Y;)=exp {G(X +—1—h) Ty confounders} (2)

where (x" = xif x = 0 and x* = 0 if x < 0) and h is an
unknown change-point that is estimated from the data. In
both modeling approaches, the term confounders repre-
sents time-varying covariates (as, for example, long-term
trends and seasonality in the mortality time-series and
weather variables), which may bias the particle—mortality
association. These confounders are modeled as natural
cubic splines (Table 1).

MORTALITY DISPLACEMENT

The original work by Zeger and colleagues (1999) devel-
oped and illustrated an approach for estimating the associ-
ation between air pollution and mortality from time-series
data that is resistant to short-term harvesting. The method
was based on the concept that harvesting alone creates
associations only at shorter-time scales. It used frequency-
domain log-linear regression (FDLLR) (Kelsall et al 1999)
to decompose information about the pollution—mortality
association into distinct time scales and then created har-
vesting-resistant estimates by excluding the short-term
information that is affected by harvesting. This method
was applied to total suspended particles (TSP) and mor-
tality counts from Philadelphia for 1974 through 1988 and
showed that the TSP—mortality association in Philadel-
phia was inconsistent with the harvesting-only hypothesis
and that the harvesting-resistant estimates of the TSP rela-
tive risk were actually larger, not smaller, than the ordi-
nary estimates. Because the software for fitting FDLLR
used GAM with default convergence parameters, reanal-
yses are now necessary.

Here we reanalyzed the Philadelphia data using two
methods: (1) applying the FDLLR software but with strin-
gent convergence parameters (10~ 15) for the S-Plus func-
tion GAM; and (2) developing an alternative method
based on the time-domain analog of FDLLR, which uses
natural cubic splines and GLM. Time-domain log-linear
regression (TDLLR) is based on a Fourier decomposition
of air pollution time series into a set of independent expo-
sure variables, each representing a different time scale.
These variables are then used as predictors in a Poisson
regression model to estimate a separate relative rate of
mortality on each exposure time scale while controlling
for time and temperature. More specifically, let X§ be the
air pollution time series, and Y$ be the mortality time
series in location c¢. We first decompose the air pollution

Table 1. Potential Confounding Factors or Predictors in Estimation of City-Specific Relative Rates Associated with
Particulate Air Pollution Levels and Rationale for Their Inclusion in the Model

Predictors

Primary Reasons for Inclusion

Indicator variables for the three age groups
Indicator variables for the day of the week

Natural cubic splines of time with 7 df per year

Natural cubic splines of temperature with 6 df

Natural cubic splines of dewpoint with 3 df

Separate natural cubic splines of time (2 df for year) for
each age group

Allow different baseline mortality rate within each
age group
Allow different baseline mortality rate within each day of
the week
To adjust for long term trend and seasonality
To control for the known effects of weather on mortality
To control for the known effects of humidity on mortality
To separately adjust for seasonality within each age goup
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series X% into distinct component series X}, one for each
distinct time scale k, and then we calculate the association
between Y$ without decomposition, and each of the time
scale components XG. The decomposition is obtained by
applying the discrete Fourier transform to the X§ series
(Bloomfield 1976). Specifically, we assume:

E(Yf)=exp 2 B iX it + confounders (3)
k

where Bf (the parameter of interest) denotes the log-relative
rate of daily mortality for each 10 unit increase in the air pol-
lution level in location ¢ on a time scale k. The TDLLR and
its application to four NMMAPS cities are described in
detail elsewhere (Dominici et al 2003).

RESULTS

EXPOSURE RESPONSE RELATION

Differences in the shape of the exposure-response curves
were not observed when comparing the new with the orig-
inal analyses. Figure 1 shows exposure-response curves for
total (TOTAL) mortality from nonexternal causes, mortality
from cardiovascular and respiratory (CVDRESP) causes, and
other causes (OTHER) for the 20 largest US cities, 1987—
1994. Figure 2 shows regional PM,,-mortality exposure—
response curves for TOTAL, for each region, and the
national average, for the 88 largest US cities, 1987—-1994.
The national average exposure-response curves for both

E

the 20 and 88 cities are linear, and the posterior proba-
bility of zero knots is approximately 1. At the regional
level, the data from cities in several regions (Northwest,
Upper Midwest, and Southeast) indicate some modest
departure from a linear model. In particular, the Northwest
and Upper Midwest regions show a leveling (saturation
effect) at higher levels of PM. However, the uncertainty
boundaries for these regions indicate compatibility of the
data with a linear relation, and we cannot explain why
these regions might have other than a linear exposure—
response curve.

Figure 3 shows posterior probabilities for a threshold for
the effect of PM;( on the cause-specific mortality group-
ings for the 20 largest US cities, 1987-1994. The posterior
distributions on the location of the threshold are skewed to
the right for TOTAL and CVDRESP and are skewed to the
left for OTHER. The category of OTHER had the highest,
most-probable threshold, at 65 pg/m?3. For CVDRESP, how-
ever, the data give more support to a low value of h (as 0, 5,
10 pg/m3), lower than TOTAL. The threshold, if any, for
CVDRESP may be lower than for TOTAL.

MORTALITY DISPLACEMENT

Figure 4 shows the frequency-domain estimate of the
relative rate for mortality associated with air pollution as a
function of frequency. (The frequency-domain estimates
were derived from a GAM model that included current-
day pollution level, a smooth function of time with a total
of 90 df, a smooth function of current-day temperature
with 6 df, and a smooth function of current-day dew point
temperature with 6 df.) The horizontal axes denote the
Fourier frequencies (bottom) and the time scale in days

E Total CVDRESP Other
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Figure 1. Mortality-PM,, dose-response curves for total nonaccidental mortality (Total), cardiovascular and respiratory mortality (CVDRESP), and
mortality from other causes (Other), 20 largest US cities, 1987-1994. The exposure-response curves for the mean lag, current day, and previous day PM;q
are denoted by solid lines, squared points, and triangle points, respectively.
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Figure 2. Regional and national-average PM,-mortality exposure-response curves. Solid black curves are obtained by fit-
ting the spline model with the reversible jump Markov chain Monte Carlo (RIMCMC) (Green 1995) and allowing for an
unknown number and location of knots. The curves with the empty dots are obtained by setting one knot at 40 pg/m® and fit-
ting the spline model with a Gibbs sampler. The linear curves are obtained by fitting the hierarchical linear model with a
Gibbs sampler without borrowing strength across regions. The shaded area denotes the 95% confidence bands for the curve
with a fixed knot.
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Figure 3. Posterior probabilities of thresholds for each cause-specific mortality and for mean lag PM,, 20 largest US cities, 1987-1994. Total, total
nonaccidental mortality; CVDRESP, cardiovascular mortality and respiratory mortality; Other, mortality from other causes.
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Figure 4. Philadelphia database 1974-1988: comparison between fre-
quency domain (continuous curve) and time-scale estimates (points con-
nected by line segments), showing the log-relative rates of Total mortality
by frequency and frequency grouping. The dotted lines show + 2 SE for the
frequency domain estimates and the bars represent + 2 SE for the time-scale
estimates. TSP = total suspended particles.

(top) at which the association is measured. The dotted
curves denote the estimated relative rates, plus or minus
two estimated standard errors, respectively, at each fre-

quency. The time-scale estimates (points connected by
line segments) are plotted on top of the frequency-domain
results (continuous curve). Time-scale and frequency-
domain results are similar, indicating little sensitivity of the
results to the modeling assumptions. In addition, consistent
with results for the four NMMAPS cities (Dominici et al
2003), relative rate estimates at longer time-scales are larger
than relative rate estimates at shorter time scales, indicating
a pattern of air pollution effects at different time scales that
is inconsistent with the harvesting-only hypothesis.

DISCUSSION

We have presented NMMAPS reanalyses of the shape of
the exposure-response curves for the 20 and 88 cities
applying FDLLR and TDLLR to assess mortality
displacement.

The exposure-response analyses were performed by
using the same modeling approaches described in pre-
vious publications but replacing the smoothing spline
with natural cubic splines with the same degrees of
freedom for the adjustment of time-varying confounders.
On average, the shape of the exposure-response curve is
linear, confirming results reported in the original analyses.

The analyses of mortality displacement were performed
by using FDLLR software with GAM with stringent conver-
gence parameters and by developing and applying an alter-
native time domain approach (TDLLR) (Dominici et al
2003), which used natural cubic splines and GLM soft-
ware. As reported in previous analyses, both methods pro-
duce patterns of relative rate estimates at different time
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scales that are inconsistent with the hypothesis of mor-
tality displacement.
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ABBREVIATIONS AND OTHER TERMS

CDVRSP cardiovascular and respiratory mor-
tality
FDLLR frequency-domain log-linear regres-
sion
GAM generalized additive model
GLM generalized linear model
NMMAPS National Morbidity, Mortality, and Air
Pollution Study
PM;q particulate matter of 10 pm mass
median aerodynamic diameter
TDLLR time-domain log-linear regression

approach
TSP total suspended particles



Mortality and Air Pollution for Santa Clara County,

California, | 989—1996

David Fairley

ABSTRACT

The data are reanalyzed using generalized additive
models (GAMs*) with stricter convergence criteria. The
results are essentially unchanged with coefficients differing
by at most + 0.5 standard error (SE) from the original and rel-
ative risks differing by at most + 0.01 SE. Various inference
methods are compared. The method comparing GAM coeffi-
cients with standard errors generated from generalized
linear models (GLMs) produces P values similar to simula-
tions. The S-Plus ANOVA (analysis of variance) feature
often gave conservative results. As found previously, a sta-
tistically significant relation existed between daily nonacci-
dental mortality and every criteria pollutant, either on the
same day or lag one. Particulate matter (PM) less than 2.5
pm in diameter (PM, 5) and nitrate (NO3) predominate when
included in models with carbon monoxide (CO), nitrogen
dioxide (NO,), and sulfate (SO,). Coarse-fraction PM, less
than 10 pm in diameter (PM), was not statistically signifi-
cant. A new ozone (O3) variable—the daily number of parts
per billion (ppb)-hours greater than a 60-ppb threshold
(03ppbgt60)—was found to have a statistically significant
relation with nonaccidental mortality even when included
in a regression jointly with PM, 5 or NO5 and was also sig-
nificantly related to cardiovascular mortality.

INTRODUCTION

Ockham's Razor: A rule in science and philosophy
that... the simplest of two or more competing theories
is preferable and that an explanation for unknown phe-
nomena should be first attempted in terms of what is
already known.

—The American Heritage Dictionary, 2nd Edition

* A list of abbreviations and other terms appears at the end of the section.

This short communication report is part of an HEI Special Report, which
also includes 20 other reports, a section on NMMAPS I, two HEI Commen-
taries, and an HEI Statement. Please address correspondence about this sec-
tion to Dr David Fairley, Bay Area Air Quality Management District, 939
Ellis Street, San Francisco CA 94109.
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Problems have recently been reported in use of the
GAM function in the S-Plus statistics package (Dominici
et al 2002). The GAM procedure uses an iterative algo-
rithm to find the solution. Further analysis found that the
default number of iterations and the stopping criterion
sometimes produced results that were far from those
obtained after the algorithm converged. Furthermore, the
standard errors provided in S-Plus were shown to under-
estimate the true standard errors. Questions about the
results using GAM are of particular concern because the
current reevaluation of the national particulate standards
are based on time-series studies, many of which used this
function (for example, Dominici et al 2000; Kelsall et al
1997; Moolgavkar 2000; Saez et al 2002; Samet et al 2000;
Schwartz 1994).

Because of questions raised by these problems, we
decided to reanalyze the data from our previous study
(Fairley 1999). In our previous analysis, we used GAM but
with a more stringent stopping criterion than the default so
that the results in this reanalysis changed only in a minor
way. Moreover, the previous analysis did not use the stan-
dard errors provided in the S-Plus summary GLM func-
tion. Instead we used an F test from the ANOVA function,
which is based on the change in —2 log (likelihood), to
determine whether the addition of a variable was statisti-
cally significant. Thus, conclusions about statistical signif-
icance are also essentially unchanged.

This analysis contained some innovations. One was to
augment the PM, 5 data using other variables. A second
was to use an alterative ozone variable—o3ppbgt60.

DATA AND METHODS

The same data and variables were used as in the previous
study with two additions (03ppbgt60 and pm2.5aug [PM, 5
measurements augmented with PM, 5 predicted from COH
and PMl): 24-hour PM, 5, PM; 3, PM;_5 5, NO3 and SOy;
24-hour averaged coefficient of haze (COH) and NO,; and
8-hour averaged CO and O, for 1989 through 1996 from the
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4th Street monitoring site in San Jose Santa Clara County,
California. Regressions were performed for all nonaccidental
deaths to residents who died in the county: International
Classification of Diseases (ICD) codes 0-799; respiratory
mortality (ICD codes 11, 35, 472-519, 710.0, 710.2, 710.4);
and cardiovascular mortality (ICD codes 390-459).

The same methods were used as in the previous study
except for increasing the stringency of the stopping rule.
Briefly, a Poisson regression model was fit with GAM
terms for day of year and trend with the best fit determined
by minimizing Akaike information criterion (AIC). GAM
terms for minimum and maximum temperatures were
added to this model and again the model with the min-
imum AIC was determined. The degrees of the smooths
were the same as found previously. Various pollutant
terms were then added to this best fitting model.

The stopping rule was tightened with epsilon and back-
fit epsilon set to 1012, whereas previously it had been
104 (already been more stringent than the S-Plus default,
1073) in the previous analysis. The maximum number of
iterations was raised from the default, 10, to 107. These
were chosen based on trial and error so that there was no
change if the stopping rule was made more stringent.

For comparison, a parallel analysis was done using GLM
regression. Here, natural splines were used in place of
smoothing splines. AIC was again used to find the optimal
degree of freedom (df) for day of year, trend, and minimum
and maximum temperatures. The same strict convergence
criteria were used as with the GAM regression.

The reanalysis updates Tables 4, 5 and 6 from Fairley
(1999). As mentioned previously, inference on whether a
variable included in the fit was statistically significant was
based on the deviance [change in —2 log(likelihood)] from
adding that variable, using the ANOVA feature in S-Plus.

S-Plus does not provide standard errors for GAM regres-
sions and advises using a suggestion from Chambers and
Hastie (1992): "In practice, one can always approximate
the nonparametric term parametrically (and even conser-
vatively) using functions such as bs () [B spline] or ns ()
[natural spline], and use the inexpensive parametric stan-
dard-error curves." Following this advice, standard error
estimates were obtained by running GLM regressions,
replacing smoothing splines with natural splines of the
same degree. These standard errors were used to compare
the differences in coefficients between this and the orig-
inal analysis and between GAM and GLM regressions.

To check the reliability of these inferences, simulations
were performed from the model fit without pollutant
variables (that is, assuming that the null-model fitted
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parameters were the true parameters), generating Poisson
variates from this model and then refitting the model
including a pollutant variable. This simulated the null
distribution of the pollutant coefficient, allowing
comparison of the pollutant coefficient estimated using
the actual data. A more general simulation was also rerun
for PM, 5 and pm2.5aug. Here the whole model-building
process is simulated—finding the model with the best AIC
for time/season terms, then finding the model with the
best AIC for temperature, and finally adding the PM term.
See Fairley (1999) for more details. The only difference
with the 1999 simulations was using epsilons of 10712 and
103 iterations.

As a third comparison, inferences were based on the
ratio of the fitted GAM coefficients to the GLM standard
errors mentioned previously.

Note that some errors were found in the original anal-
ysis. One was the miscoding of missing ozone values. The
other two were mistaken entries. One mistake was the rel-
ative risk of COH with respiratory mortality. The relative
risk (RR) 1.07 should have been 1.10 (and highly signifi-
cant). The second mistake was the RR for PM, 5 for spring
seasonal regression, which was listed in the original docu-
ment as 1.05 when it should have been 0.92.

The original dataset had only 408 PM, 5 observations so
the power was borderline for detecting an effect. We found
that PM, 5 could be well predicted from PM,, and COH,
more than doubling of the number of PM, 5 values. In par-
ticular, a linear regression yielded a fit of PM, 5 = 0.392 X
PM;y + 14.0 X COH - 4.02, with a regression standard
error of 4.49 ng/m® and a multivariate coefficient of deter-
mination (R?) of 0.88. The total number of pm2.5aug obser-
vations was 835.

A second and perhaps more significant innovation was
to use an alternate variable for ozone. Previously, 8-hour
maximum ozone (oz8hr) was used because it corre-
sponded to the national standard. However, the 8-hour
averages often contain very low ozone values; clinical
studies have not found ozone health effects below about 80
ppb and the natural background is approximately 40 ppb.
Thus, it seemed reasonable to consider the daily number of
ppb-hours above a threshold, with thresholds between 40
ppb and 80 ppb. The highest correlations with daily mor-
tality were found using a threshold of 60 ppb, so those
results are reported here. Figure 1 shows this variable
plotted against daily mortality. This variable, denoted
03ppbgt60, is highly skewed. The largest values are clearly
influential observations.
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Figure 1. Daily nonaccidental deaths versus daily ozone ppb-hours
greater than 60 ppb.

RESULTS

COMPARISON OF RESULTS FROM STRICT AND
DEFAULT GAM ANALYSIS

Tables 1a and 1b present RRs from the old and new GAM
regressions for all nonaccidental cause mortality. To com-
pare the magnitude of the changes in coefficients, the GLM
standard errors were used to normalize the differences
(that is, taking the ratio of the difference between the coef-
ficient from the old and new analyses to the standard
error). There were 34 analyses that were repeated in Tables
1a and 1b. The range of normalized differences was —0.34
to +0.40, but 40 were between —0.09 and +0.05.

The relative risk estimates remained virtually identical,
changing by at most + 0.01. The statistical significance
changed in only one case: same-day 0z8hr was not found
to be statistically significant in the new analysis (although
the estimated coefficient increased somewhat). The differ-
ence was not due to GAM but to the miscoding of ozone
data in the original analysis (as mentioned earlier).

The results for cardiovascular and respiratory mortality
in Table 2 are almost identical to those in the original anal-
ysis. The one exception, as mentioned previously, is that
the RR for lag COH was 1.10, which is highly significant;
the previously reported RR of 1.07 was an error. The
pm2.5aug data were statistically significant in the regres-
sion with cardiovascular mortality, whereas the coefficient
for the nonaugmented PM, 5 was not.

The RRs for Table 3 are identical except, as mentioned
before, for PM, 5 in summer; pm, saug is statistically sig-
nificant in the winter months.

COMPARISON OF RESULTS FROM DEFAULT GAM
AND GLM ANALYSES

The same 34 values from Table 1 were also computed
using a GLM regression. The normalized differences were
greater on the whole than between the old and new GAM
analyses, with a median absolute difference of 0.15. The
differences ranged from —0.18 to +0.37. The GLM coeffi-
cients were statistically smaller, with an average normal-
ized difference of 0.081. The GLM results are very similar
to the GAM approach, with no RRs differing by more than
0.02 and all but five differing by 0.01 or less. The same
coefficients were statistically significant.

Only PM,(, PM, 5, pm2.5aug, and o3ppbgt60 GLM anal-
yses are shown in Table 2. The results are again essentially
unchanged.

Table 3 presents RRs by season. Here the results are
unchanged with two exceptions. Under GLM, NOj is no
longer statistically significant for the summer months, and
lag COH becomes statistically significant for the winter
months.

RESULTS FOR DAILY NUMBER OF HOURS WITH O4
GREATER THAN OR EQUAL TO 60 ppb

For nonaccidental mortality, 03ppbgt60 is statistically
significant alone and paired with other pollutants. The
inclusion of 03ppbgt60 in a model with other pollutants
produces almost no change either in the coefficient esti-
mates or the statistical significance of the other pollutants.
In contrast, the inclusion of PM, 5 or NO5 with another
variable (except for 03ppbgt60 and oz8hr) reduces the
magnitude and statistical significance of the coefficient of
the other variable. The 03ppbgt60 was statistically signifi-
cant in the regression with cardiovascular mortality but
not respiratory mortality. For the seasonal regressions in
Table 3, 03ppbgt60 is statistically significant in summer
but not other seasons.

COMPARISON OF P VALUES

Because confidence intervals have been used to com-
pare the results from various studies, it is worthwhile to
examine the relation between inferences derived directly
from the F tests of one model versus another with the indi-
rect inferences derived from f tests comparing the coeffi-
cients with their estimated standard errors. Table 4 shows
a comparison of P values for these tests for the inclusion of
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Table 3. Relative Risks (95% Confidence Intervals?) for Daily Mortality from Nonaccidental Causes by Season°
0Old GAM New GAM New GLM
Springd
PMio 0.076 0.076 (—0.086,0.267) 0.100 (—0.045,0.267)
PM, 5 0.071 0.071 (—0.132,0.322) 0.047 (—0.132,0.263)
pm2.5aug 0.065 (—0.124,0.293) 0.108 (—0.053,0.295)
lag COH 0.023 0.023 (—0.054,0.105) 0.027 (—0.045,0.105)
NO; 0.072 0.072 (—0.046,0.205) 0.062 (—0.047,0.182)
SO, 0.058 0.058 (—0.049,0.179) 0.067 (—0.027,0.170)
03ppbgt60 0.018 (—0.183,0.269) 0.024 (—0.141,0.220)
Summer®
PMio 0.100 0.100 (—0.161,0.444) 0.088 (—0.170,0.427)
PM, 5 -0.077 -0.076 (—0.326,0.266) —0.087 (—0.453,0.524)
pm2.5aug 0.192 (—0.172,0.716) 0.173 (—0.202,0.723)
lag COH 0.128 0.128 (—0.085,0.391) 0.116 (—0.094,0.376)
NO; 0.316 0.316 (0.000,0.731) 0.296 (—0.019,0.712)
SO, 0.107 0.108 (0.002,0.224) 0.108 (—0.009,0.238)
03ppbgt60 0.107 0.074 (0.015,0.137) 0.094 (0.022,0.171)
Fall!
PMio 0.071 0.071 (—0.096,0.269) 0.095 (—0.074,0.295)
PM, 5 0.039 0.039 (—0.191,0.335) 0.043 (—0.250,0.448)
pm2.5aug 0.152 (—0.052,0.399) 0.191 (—0.027,0.459)
lag COH 0.082 0.081 (—0.018,0.191) 0.077 (—0.021,0.185)
NO; —0.131 —0.131 (—0.269,0.033) —0.099 (—0.239,0.067)
SO, 0.030 0.030 (—0.058,0.126) 0.036 (—0.060,0.142)
03ppbgt60 0.036 (—0.031,0.108) 0.038 (—0.029,0.109)
Winters
PMio 0.065 0.065 (—0.004,0.138) 0.057 (—0.006,0.124)
PM, 5 0.046 0.046 (—0.054,0.155) 0.034 (—0.057,0.135)
pm2.5aug 0.075 (0.000,0.154) 0.064 (—0.004,0.137)
lag COH 0.036 0.036 (—0.001,0.074) 0.036 (0.004,0.070)
NO; 0.073 0.073 (0.006,0.145) 0.062 (0.002,0.126)
SO, —0.004 -0.004 (—0.088,0.088) —0.011 (—0.101,0.088)
03ppbgt60 -0.299 (—0.892,3.534) -0.337 (—0.917,4.301)

% The confidence intervals are ¢ + 2*s, where for GAM, s = abs(c)/sqrt(F), the F obtained from applying ANOVA to the models with and without the pollutant
variable, and for GLM, s = standard error provided by S-Plus.

b Relative risks calculated by exp(b*Ap) — 1, where b is the pollutant coefficient from the GAM or GLM regression, and Ap = 50 for PM,;, and 50 *
sd(p)/sd(pm10) for other pollutants, p. For example, sd(pm2.5) = 13, sd(pm10) = 23, so for pm2.5, Ap = 50 * 13/23 = 28. Single asterisks indicate statistical
significance at the 0.05 level, double asterisks at the 0.01 level.

¢ All models include a 7 df smoothing spline for trend, 12 df smoothing spline for season, 3 df smoothing spline for minimum temperature, and 2 df
smoothing spline for maximum temperature.

d February, March, April.
¢ May, June, July.
f August, September, October.

& November, December, January.
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Table 4. Comparison of P Values for Models Evaluating Daily Mortality from Nonaccidental Causes with Same-Day

Pollutant Alone Derived from Different Methods

Confidence Limit

Simulation

t values?® F test” Deviance®  Simulation? Lower 95% Upper 95% Size
PM;, 0.0017 0.0017 0.0016 0.0015 0.0005 0.0039 2000
PM; 5 0.0105 0.0122 0.0145 0.0063 0.0046 0.0087 6000
pm2.5aug 0.0016 0.0017 0.0015 0.0015 0.0005 0.0039 2000
COH 0.1557 0.1786 0.1729 0.1380 0.1180 0.1610 1000
NO; 0.0016 0.0022 0.0021 0.0020 0.0012 0.0035 6000
SO, 0.0195 0.0207 0.0196 0.0210 0.0014 0.0320 1000
NO, 0.0391 0.0599 0.0571 0.0417 0.0351 0.0495 3000
CcO 0.1127 0.1410 0.1365 0.1130 0.0990 0.1280 2000
04 0.0389 0.0654 0.0624 0.0390 0.0314 0.0485 2000
PMig_a5 0.4912 0.4682 0.4783 0.4990 0.4680 0.5300 1000
03ppbgt60 0.0005 0.0013 0.0012 0.0008 0.0003 0.0022 4000

@ Ratio of estimated coefficient to standard error estimate from Table A3 in Fairley 1999.

b F test from ANOVA comparing GAMs with and without the pollutant variable.

¢ Assuming that the deviance has a chi-squared distribution with 1 df.

d Simulations of the null distribution of the pollutant coefficient. Gonfidence limits based on the binomial distribution.

same-day, single pollutant variables (the same-day, New
GAM column of Table 1a). Also included are P values
using the simple assumption that the change in deviance
has a chi-squared distribution with 1 df. In addition, the
simulation results are shown along with simulation size
and confidence intervals based on the binomial.

Table 4 shows that the t tests gave results similar to the
simulations. The F tests and chi-squared tests gave effec-
tively the same results but appear conservative. In the case
of same-day NO, and oz8hr, this small difference between
the two tests meant the difference between significance and
nonsignificance. In the case of the PM, 5 coefficient, all the
tests appear conservative: the upper confidence bound for
the P value from the simulation is 0.0087, less than any of
the other P value estimates. The more extensive simulation,
where the entire model-fitting process was simulated,
resulted in 8 of 1000 runs in which the simulated PM, 5
coefficient was greater than the observed PM, 5 coefficient
in absolute value. The extensive simulation also suggests
that the PM, 5 P value is, if anything, overestimated using
the F test, deviance or  value approaches. In the case of the
pm2.5aug coefficient, all 4 methods gave similar P values,
between 0.0015 and 0.0017. The more extensive simulation
yielded 2 values out of 1100 greater in absolute value than
the observed for an approximate P value of 0.0018, very sim-
ilar to the other results.
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SENSITIVITY ANALYSIS: USE OF SINGLE
TREND/SEASON SMOOTH

An analysis was performed to determine the effect of
using a single smooth for season/trend instead of two.
Again, smoothing splines were used and AIC was used as
the stopping rule. The minimum AIC of 3104.6 was
achieved with 75 df, compared with an AIC of 3079.8
using 7 df for trend and 12 df for season. When tempera-
ture terms and PM, 5 were added to this model, the esti-
mated PM, 5 RR increase dropped from 0.092 to 0.071 and
was no longer statistically significant. The estimated RR
for pm2.5aug dropped from 0.083 to 0.065 but remained
statistically significant.

Figure 2 shows the crude partial ACFs for nonacci-
dental mortality, the residuals from the 7 df trend/12 df
season fit, and the residuals from the 75 df trend/season
fit, respectively. Figure 2A shows highly significant auto-
correlation in the daily nonaccidental mortality data, with
a first order coefficient of about 0.20. Figure 2B shows a
first order ACF of just over 0.04, borderline statistically
significant, but otherwise an apparently random pattern
of positive and negative ACF. Figure 2C shows almost all
negative coefficients. The 7 df trend/12 df season fit had a
deviance of 3038.5, similar to the deviance from fitting a
single series with 37 df (deviance 3039.4), close to the 4 df
per year suggested by Joel Schwartz at the recent US Envi-
ronmental Protection Agency (EPA) Workshop on GAM-
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Figure 2. Partial autocorrelation coefficients (partial ACFs). A. Partial ACF of nonaccidental mortality. B. Partial ACF of residual df: 12 season, 7 time.

C. Partial ACF of residuals from fitting time with 75 df.

Related Statistical Issues in PM Epidemiology, November
4-6, 2002 (Research Triangle Park NC).

DISCUSSION

The basic conclusions of the previous analysis were
unchanged: Considered individually, every criteria pol-
lutant (either same-day or lagged by one day) was signifi-
cantly related to daily mortality. PM, 5 and NO5 continued
to be significantly related to mortality in conjunction with
the other pollutants.

The fact that the GAM results were virtually identical to
the GLM results underscores the conclusion reached in the
EPA Particulate Matter Criteria Document (1996), which
considered a range of studies analyzing the effects of
model choice in short-term mortality studies:

Differences in model specification may produce
important differences in estimates of effects. The gen-
eral concordance of PM effects estimates, particularly
in the analysis of short-term mortality studies, is a con-
sequence of certain appropriate choices in modeling
strategy that most investigators have adopted using
several different types of standardized models (GLM,
LOESS, etc.).

The inferences used in this analysis may be
conservative. Although there is no gold standard, the
simulations should be the closest to a gold standard
because they do not rely on an asymptotic distribution.
The only limitation is that the simulations did not account
for the uncertainty in the underlying parameters (ie, it did
not include simulation of fitting the null model). However,
the more extensive simulation of the model-building
process of selecting the df for trend, season and weather
using AIC gave similar results to the simpler simulation.
Using the ANOVA feature of S-Plus or assuming the
change in the deviance has a chi-square distribution that

gave more conservative results than those from the
simulations. Inferences using the GLM-based standard
errors agreed closely with the simulations in most cases,
suggesting that they do not always produce conservative
results. This finding suggests that the GLM-based standard
errors may be acceptable for drawing inferences. Perhaps
these could be incorporated as defaults or options in
statistics packages that offer GAM.

The one modeling choice that does make a substantial
difference is using two time smooths—one for trend and
one for season—rather than a single time smooth. Using a
single time smooth results in considerably lower PM coef-
ficient estimates and lower statistical significance. How-
ever, the single time smooth model that minimized the AIC
had 75 df, which is more than 9 per year from 1989 to
1996. This, according to the discussion at the GAM work-
shop, may constitute overfitting. In fact, Figure 2C shows
evidence of overfitting in that almost all the autocorrela-
tion coefficients are negative. Also, the AIC for the single
time-term model is 3104.6, considerably poorer than the
AIC for the 7 df trend/12 df season model, 3079.8.

Parsimony is an established scientific rule. By Ockham’s
Razor, if there is a choice between similar-fitting models, the
one with fewer terms should be favored. And a previously
suspected cause (in this case PM) should be favored over an
unknown cause (for which time is a surrogate). In practical
terms, the question to address is how much of the short-
term mortality variation to attribute to PM vis-a-vis some
other covariate represented by additional degrees of
freedom in the time smooth. The fitting process begins with
a fit of time/season only. This tends to add more degrees of
freedom for these terms because every day is included, not
the 1 in 6 days where PM, 5 data are available. Secondly,
AIC is a liberal criterion, which includes variables that are
not statistically significant. Thus, the modeling approach
allows a reasonable chance for the other covariate to dem-
onstrate its existence. Yet pm2.5aug remains statistically
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significant, even in the 75 df trend/season model, and the
estimated PM effect drops by about a quarter, rather than
disappearing entirely. Thus, the two-smooths model with
fewer parameters and higher PM coefficients appears pref-
erable according to the Ockham’s Razor.

The new ozone variable, 03ppbgt60, was found to be sta-
tistically significant even in a regression jointly with PM, 5
or NO3. Two other thresholds were tried—40 ppb and 80
ppb—both of which produced statistically significant
results in one-pollutant models but somewhat smaller RRs.
Although 03ppbgt60 is quite skewed, the results do not
appear to be a function of a few outliers; a regression using
log(o3ppbgt60) also yielded statistically significant results.
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ABBREVIATIONS AND OTHER TERMS

ACF autocorrelation coefficient
AIC Akaike information criterion
ANOVA analysis of variance
CL confidence limit
Co carbon monoxide
COH coefficient of haze

df  degree of freedom

EPA Environmental Protection
Agency (US)

GAM generalized additive model
GLM generalized linear model
ICD International Classification

of Diseases
NO, nitrogen dioxide

NO;4 nitrate

ns natural spline
(O ozone
03ppbgt60 ozone ppb-hours greater than 60 ppb

summed for each day

0z8hr 8-hour maximum ozone
PM particulate matter
PM, particulate matter < 10 ym in diameter
PM, 5 particulate matter < 2.5 pm in
diameter
pmz2.5aug PM, 5 measurements augmented with

PM, 5 predicted from COH and PM,
ppb parts per billion
R? multivariate coefficient of variation
RR relative risk
SO, sulfate



Ambient Pollution and Reduced Heart Rate Variability

Diane R Gold, Joel Schwartz, Augusto Litonjua, Richard Verrier,

and Antonella Zanobetti

ABSTRACT

We investigated associations between ambient pollution
levels and heart rate variability (HRV*) in a repeated mea-
sures study of elderly Boston residents and published our
study results in Circulation®. The study protocol involved
25 minutes per week of continuous Holter electrocardio-
gram (ECG) monitoring including 5 minutes of rest, 5 min-
utes of standing, 5 minutes of exercise outdoors, 5 minutes
of recovery, and 20 cycles of slow breathing. Measures of
HRYV included the standard deviation of normal intervals
between adjacent R waves on an ECG (RR intervals)
(SDNN) and the square root of the mean of the squared dif-
ferences between adjacent normal RR intervals (r-MSSD).
Ambient particle and ozone increases were associated
with decreased HRYV, suggesting pollution-related auto-
nomic imbalance. In the published article we presented
results from random effects analyses that did not utilize
generalized additive models (GAMs), demonstrating our
ability to replicate our main findings derived from GAMs.
To address any further concerns regarding secondary
results from GAMs that might use inadequate default con-
vergence criteria and/or have variance estimation issues,
we performed a comprehensive revised analysis of our
study and found no significant differences in the estimates
of the effects of ambient pollution (airborne particulate
matter with an aerodynamic diameter equal to or less than
2.5 pm [PM, 5] or ozone) on HRV.

INTRODUCTION

Reduced HRYV is a predictor of increased risk for cardio-
vascular mortality and morbidity??. In a recently published

* A list of abbreviations and other terms appears at the end of the section.
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vard Medical School, 181 Longwood Ave, Boston MA 02115-5804.

Health Effects Institute © 2003

study?, we assessed the relation between short-term changes
in multiple air pollutants and short-term changes in HRV in
a community-based elderly population. Ambient particle
and ozone increases were associated with decreased HRV,
suggesting pollution-related autonomic imbalance.

METHODS

STUDY SAMPLE AND PROTOCOL

In this paper we present a revised analysis of data first
presented in published form in Circulation®. Significant
portions of this section were first presented in that article.
The methods were as follows. Between May and July 1997
volunteers were recruited from a Boston housing commu-
nity, where the screening and testing office were located, on
the ground floor of an apartment building. A questionnaire
was administered regarding medications, pulmonary and
cardiac symptoms, and smoking history. A resting 12-lead
ECG was performed. Exclusion criteria included unstable
angina, atrial flutter, atrial fibrillation, paced rhythm, and
left bundle branch block. Inclusion criteria included the
ability to walk on level ground. Of the 31 individuals who
were screened, 21 entered the repeated measures study.

Each participant was given a day of the week and time
when weekly testing would be performed. Subjects were
tested June through September from 9:00 am to 2:00 pm,
Monday through Friday, by a team of two technicians or
physicians. Participants were administered a brief question-
naire regarding chest pain, doctor’s visits, hospital visits,
medication changes, and whether medication had been
taken that morning. Continuous Holter monitoring with
electrodes in a modified V5 and AVF position was per-
formed during a protocol: (1) Five minutes of rest. Respira-
tory rate and three supine blood pressures were measured
using a mercury column sphygmomanometer; (2) Five min-
utes of standing. After two minutes of equilibration,
standing blood pressure was measured three times; (3) Five
minutes of exercise outdoors. If the participant felt able, a
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standard walk was performed, involving one climb up a
slight incline; (4) Five minutes of recovery. The participant

lay down again and respiratory rate was recorded; (5) Three
minutes and twenty seconds of slow breathing.* During
each of 20 respiratory cycles, the participant was asked to
breathe in for five seconds and then out for five seconds,
with technician coaching. The slow-breathing portion
enabled us to evaluate whether the effects of pollution on
HRV were independent of respiratory rate, which might
also be influenced by pollution levels.

PROCESSING OF HOLTER RECORDINGS

Using a Marquette MARS Workstation, a trained engineer
reviewed and, when necessary, corrected automatically
determined readings of QRS complexes. Regions of noise
and artifact (< 1% of data) were eliminated. After correc-
tion, software facilities on the MARS were used to export
beat timing and annotation information for analysis and cre-
ation of outcome variables through custom PC-based soft-
ware written in the C language. Only normal-to-normal
(NN) intervals between 150 and 5000 milliseconds with NN
ratios between 0.8 and 1.2 were included for analysis of
HRV. No tape contained more than 1% premature beats.

Two time-domain measures of HRV were obtained. The
SDNN and r-MSSD were calculated from all normal RR
intervals for each portion of the protocol and the overall
protocol.

EXPOSURE MONITORING

Airborne particulate matter with an aerodynamic diameter
equal to or less than 10 pm (PM, () and PM, 5 were measured
continuously 6 km from the study site using a model 1400A
tapered element oscillating microbalance (TEOM). Since the
TEOM sample filter is heated to 50°C, a season-specific cor-
rection was used to compensate for the loss of semivolatile
mass that occurs at this temperature.’ Calibration factors were
obtained by regressing continuous PM, 5 and PM;, concen-
trations (averaged over 24 hours) on the corresponding collo-
cated integrated 24-hour Harvard impactor low-volume
Teflon-filter gravimetric measurements:

corrected PM, 5 = (measured PM, 5 + 2.00)/0.944
for May through August (% = 0.99).

Coarse matter was calculated by subtracting PM, 5 from
PM, (. Continuous carbon monoxide data were collected
within a quarter of a mile of the participant residence with a
ThermoEnvironmental (Franklin MA) model 48 gas ana-
lyzer using a US Environmental Protection Agency (EPA)
reference method. Ozone, nitrogen dioxide (NO,), sulfur
dioxide (SO,), temperature and relative humidity measure-
ments were obtained from the Massachusetts Department of
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Environmental Protection local monitoring site 4.8 miles
from the study site.

STATISTICAL ANALYSIS

Continuous or categorical predictor variables assumed
to be time invariate (or changing slowly) included age, sex,
race/ethnicity, body mass index, and the diagnostic cate-
gories derived from answers to the screening questionnaire
and summarized in Table 1 of the original article!. Time-
varying predictors included air pollutants, temperature,
relative humidity, and medication use.

Data analyses dealt with the variable number of
repeated measures for each subject. Whereas individual
covariates were available for each subject and were used to
control for individual differences, measured covariates
were thought unlikely to explain all interindividual differ-
ences. Each subject was not seen on each day of the study,
but rather once or twice a week, thus creating the potential
for variations in persons to be seen each day that could
confound time-varying exposures such as air pollution.
We controlled for these variations primarily by con-
structing fixed-effect models,® fitting an individual inter-
cept for each subject while still adjusting for time-varying
covariates and individual traits (the most important of
which was medication use).

Fixed-effects models have the advantage of adjusting for
both measured and unmeasured time-invariate character-
istics of the individual but also have the disadvantage of
not providing estimates for specific measured time-
invariate subject characteristics. We used the SAS mixed
procedure’ to construct a second set of random-effects
models to evaluate the sensitivity of air-pollution results
to the choice of model and to define the primary effects
and interactions with air pollution of subject characteris-
tics, the individual effects of which could not be evaluated
in a fixed-effect model. Because multiple measurements
were taken for each subject, and because those measure-
ments may not be independent, a random-subject effect
was used in these regression analyses.

Weather and air pollution are continuous-exposure mea-
sures and may not be linearly related to electrophysiologic
measures. To test this assumption, we repeated the analyses
using GAMs in S-Plus.® A GAM fits the outcome as a sum of
functions of each predictor that are not required to be linear.
The shape of these functions is estimated from the data
using nonparametric smoothing, and the significance of any
deviations from linearity can be tested using nonparametric
F tests. Fixed-effects models used nonparametric smoothing
to adjust for temperature, since temperature did not always
relate linearly with heart rate and HRV.
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In the original article!, GAM modeling with default con-
vergence criteria and nonparametric smoothing to adjust
for temperature was used in analyses presented in Table 4
(“Ambient PM, 5 as a Predictor of Heart Rate and of Heart
Rate Variability for 5 Protocol Periods”) and Table 6 (“Esti-
mated Effects of Pollution on Heart Rate Variability in
Single and Multiple Pollutant Models”). In Table 5 [“Pre-
dictors of Heart Rate and Heart Rate Variability (r-MSSD),
Random Effects Models”] from the original article, we
demonstrated our ability to replicate our main findings
derived from GAMs in our random-effects models that uti-
lized neither GAM nor nonparametric smoothing. Elevated
PM, 5 levels during the hour of testing and during the 3
hours before testing (4-hour PM, ;) were associated with
reduced HRV. Both in fixed modeling (original Tables 4
and 6) and in random effects modeling (original Table 5)
(using a smooth vs linear term for temperature), we esti-
mated a 4-millisecond reduction in r-MSSD during the
first rest period that resulted in an interquartile difference
in 4-hour PM, 5 of 14 png/m®.

To address any further concerns regarding secondary
results from GAMs that might use inadequate default con-
vergence criteria or have variance estimation issues, we
performed a comprehensive reanalysis of our study and
found no significant differences in the estimates of the
effects of ambient pollution (PM, 5 or ozone) on HRV.
First, to address the question of sensitivity of the effect size
estimates to the choice of convergence criteria and max-
imum iterations in GAMs, we refit the originally reported
fixed-effects models, changing only the convergence cri-
teria. We used the stricter convergence criteria and
number of iterations recommended by Dominici and
coworkers® (eg, 10715 and 1000, respectively).

In some models we had used a locally weighted running-
line smoother (LOESS)? to model temperature. To address
the question of sensitivity to the incorrect estimation of stan-
dard errors, we repeated the analyses using both the stricter
convergence criteria and, where temperature was included
in the model, natural spline (with 3 degrees of freedom [dfl)
was used instead of LOESS to adjust for temperature.

RESULTS AND CONCLUSION

The original results published in Circulation® are pre-
sented here in Tables 1 and 2. Table 1 presents the original
and revised results from Table 4 in the original article;
Table 2 presents the original and revised results from
Table 6 in the original article. In revised analyses not
including temperature, results were essentially unchanged
using the stricter convergence criteria (Table 1, models 1

and 2). Original analyses including temperature are shown
in Table 1 (only model 3) and Table 2. In revised analyses
for models that included temperature, when we used the
stricter convergence criteria but still adjusted for tempera-
ture with LOESS (nonparametric smoothing), results were
essentially unchanged from the original results (results not
shown). We present the results of revised analyses that
include temperature in which we use both the stricter con-
vergence criteria and natural spline to adjust for tempera-
ture (Table 1, model 3; Table 2). The magnitude and
significance of the association of PM, 5 and ozone with
reduced HRV (r-MSSD) was essentially unchanged by the
use of both stricter convergence criteria and natural spline
rather than LOESS for temperature. We conclude that the
use of stricter convergence criteria and natural spline sig-
nificantly influenced neither the magnitude nor the preci-
sion of the estimate of the association of ambient pollution
(PM, 5 or ozone) with reduced HRV.
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Table 1. Ambient PM, 5 as a Predictor of Heart Rate and Heart Rate Variability for 5 Protocol Periods®

Model 2 Model 3
Model 1 (with heart rate) (with 24-hr temperature)
Predictor Original Revised Original Revised Original Revised

Outcome Variable Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient
Variable (pg/m?) (SE) (SE) (SE) (SE) (SE) (SE)
Heart rate 24-hrPM, &

(beats/min)

First rest -0.10 (0.04) -0.10 (0.04) -0.15 (0.06) -0.15 (0.06)

Standing -0.15 (0.05)  —0.15 (0.05) -0.20 (0.07)  —0.19 (0.08)

Exercise -0.10 (0.05)  —0.10 (0.05) -0.21 (0.06)  —0.22 (0.07)

Second rest -0.02 (0.05) —0.02 (0.05) -0.11 (0.07) -0.11 (0.07)

Slow breathing —-0.04 (0.04) —-0.04 (0.04) -0.09 (0.05) -0.10 (0.06)

Overall -0.09 (0.04)  —0.09 (0.04) -0.16 (0.06)  —0.16 (0.06)
SDNN (ms)®  4-hr PM, 5

First rest -0.28 (0.16) -0.28 (0.16) -0.22 (0.16) -0.22 (0.16) -0.25 (0.18) -0.25 (0.18)

Standing -0.09 (0.15)  -0.09 (0.15)  -0.17 (0.13) -0.17 (0.13)  0.004 (0.17)  0.002 (0.17)

Exercise -0.25(0.15)  -0.25 (0.15)  -0.27 (0.14) -0.27 (0.14)  —0.24 (0.17) —0.25 (0.17)

Second rest -0.29 (0.20)  -0.29 (0.20)  -0.27 (0.20) -0.27 (0.20)  —0.11(0.22)  —0.11 (0.22)

Slow breathing -0.16 (0.14) -0.16 (0.14) -0.16 (0.14) -0.16 (0.14) -0.20 (0.16) -0.21 (0.16)

Overall® -0.24 (0.10)  -0.24 (0.10)  -0.26 (0.09) -0.26 (0.09)  -0.17 (0.11)  -0.18 (0.11)
r-MSSD (ms)?  4-hr PM, 5

First rest -0.28 (0.09) —-0.28 (0.09) -0.27 (0.09) -0.27 (0.09) -0.28 (0.11) -0.27 (0.11)

Standing -0.28 (0.11) -0.28 (0.11)  -0.32 (0.11) -0.32(0.11)  -0.29(0.12) —0.30 (0.13)

Exercise -0.09 (0.08) —0.09 (0.08)  —0.10 (0.08) -0.10(0.08)  —0.13 (0.09) —0.14 (0.09)

Second rest -0.29 (0.12) -0.29 (0.12)  -0.27 (0.12) -0.27 (0.12)  —0.25(0.14) —0.25 (0.14)

Slow breathing -0.35 (0.13) -0.35 (0.13) -0.35 (0.14) -0.35 (0.14) -0.42 (0.15) -0.42 (0.15)

Overall® -0.25 (0.08)  -0.25 (0.08)  -0.26 (0.08) -0.26 (0.08)  —0.29 (0.08)  —0.29 (0.08)

@ All repeated-measures regression models contained fixed-effects indicator variables for each of 21 participants and variables for whether the participant
took a B blocker, calcium channel blocker, angiotensin converting enzyme inhibitor, or sympathomimetic medication on the testing day. All revised
results are from models using the convergence criteria and number of iterations recommended by Dominici and colleagues® (10 ° and 1000, respectively).
No revised results used LOESS. Where temperature was included (model 3), revised results including temperature used natural spline with 3 df.

b Mean of the estimates of all 5 portions of the protocol, weighted by the standard errors.

¢ SDNN = standard deviation of normal RR intervals; ms = millisecond; --MSSD = square root of the mean of the squared differences between adjacent
normal RR intervals.
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Table 2. Estimated Effects of Pollution on Heart Rate Variability in Single and Multiple Pollutant Models®

Original Revised
Outcome Variable Predictor Estimated Estimated
(mean value) Model Variable Effect (SE) P Value Effect (SE) P Value
Heart rate, first rest period
(beats/min) 1 24-hr PM, 5 -1.8 (0.7) 0.01 -1.8 (0.8) 0.02
2 24-hr NO, -1.4 (0.6) 0.02 -1.4 (0.7) 0.04
3 24-hr SO, -1.0 (0.5) 0.03 -1.0 (0.5) 0.03
4 24-hr PM, 5 -1.6 (0.7) 0.03 -1.6 (0.8) 0.04
24-hr NOZ -1.0 (0.6) 0.09 -1.0 (0.7) 0.13
5 24-hr PM, 5 -1.6 (0.7) 0.03 -1.6 (0.8) 0.04
24-hr SO, -0.8 (0.5) 0.09 -0.8 (0.5) 0.10
Overall heart rate
(beats/min) 1 24-hr PM, 5 -1.9 (0.7) 0.01 -1.9 (0.7) 0.01
2 24-hr NO, -1.0 (0.6) 0.10 -0.9(0.7) 0.20
3 24-hr SO, -0.5 (0.5) 0.30 -0.5 (0.5) 0.31
4 24-hr PM, 5 -1.8 (0.7) 0.01 -1.9 (0.8) 0.01
24-hr NOZ -0.6 (0.6) 0.32 -0.5 (0.7) 0.49
5 24-hr PM, 5 -1.9 (0.7) 0.01 -2.0 (0.8) 0.01
24-hr SO, -0.2 (0.5) 0.60 -0.2 (0.5) 0.63
r-MSSD, first rest period
(ms)P 1 4-hr PM, 5 ~4.0 (1.5) 0.009 -3.9 (1.5) 0.01
2 1-hr 03 -3.0(1.8) 0.11 -3.0(1.9) 0.12
3 4-hr PM, 5 -3.7 (1.6) 0.02 -3.7 (1.6) 0.03
1-hr O, -2.9 (1.7) 0.10 -2.9(1.8) 0.12
r-MSSD, slow breathing
period (ms)P 1 4-hr PM, 5 -6.1 (2.2) 0.006 -6.0 (2.2) 0.007
2 1-hr 03 -5.9(2.3) 0.01 -5.8 (2.4) 0.02
3 4-hr PM, 5 -5.4 (2.2) 0.02 -5.4 (2.2) 0.02
1-hr O, -5.5 (2.4) 0.03 -5.4 (2.5) 0.03

& All repeated measures regression models contained fixed effects indicator variables for each of 21 participants and variables for whether the participant
took a B blocker, calcium channel blocker, angiotensin converting enzyme inhibitor, or sympathomimetic medication on the testing day and for 24-hr
temperature. All original results used nonparametric smoothing to adjust for temperature. No revised results used LOESS. All revised results (1) used
stricter convergence criteria and the number of iterations recommended by Dominici and colleagues® (eg, 1071° and 1000, respectively) and (2) included
temperature using natural spline with 3 df (not LOESS). Effect was estimated for interquartile changes in the ambient pollutant. The interquartile range
(Q'-Q?) for 24-hr PM,, 5 was 12 pg/m® and for 4-hr PM, 5 was 14.35 ng/m°.

b 1-MSSD = square root of the mean of the squared differences between adjacent normal RR intervals; ms = millisecond.
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df degree of freedom

ECG electrocardiogram
EPA Environmental Protection Agency
(US)

GAM
HRV
LOESS

NN
NO,

PM; 5

PM;q

r-MSSD

RR interval
SDNN

S0,
TEOM

generalized additive model
heart rate variability

locally weighted running-line
smoother

normal-to-normal
nitrogen dioxide
ozone

airborne particulate matter with an
aerodynamic diameter equal to or
less than 2.5 pm

airborne particulate matter with an
aerodynamic diameter equal to or less
than 10 pm

coefficient of variation for bivariate
analysis

square root of the mean of the squared
differences between adjacent normal
RR intervals

interval between adjacent R waves on
an ECG

standard deviation of normal
RR intervals

sulfur dioxide

tapered element oscillating
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Revised Analysis of the Montreal Time-Series Study

Mark S Goldberg and Richard T Burnett

ABSTRACT

Methods: We conducted a revised analysis of the associa-
tion between particulate mass and nonaccidental mortality
over 10 years, 1984 to 1993, in Montreal, Quebec. The orig-
inal publication results were based on nonparametric
locally weighted smoothers (LOESS*) for time and weather
variables using the S-Plus default convergence criteria. In
the reanalysis, these were replaced with natural spline
(parametric) models. The primary reanalysis made use of
the original criteria for selecting models (temporal filter
with the minimum Bartlett test for white noise) and, as
before, the weather variables were selected from those that
produced the minimum Akaike information criterion (AIC).
These parametric log-linear Poisson models accounted for
day of the week, calendar year, and overdispersion. A series
of sensitivity analyses were conducted using different
degrees of freedom (df) for the natural spline temporal filter
and different forms of the weather variables.

Results: The associations for mortality were not very
sensitive to the amount of temporal smoothing but were
highly sensitive to the functional form used to adjust for
weather. Most of the originally reported associations,
except for congestive heart failure, were highly attenuated
when a natural spline for weather (usually mean daily
temperature) was used. The response curve for mean tem-
perature was rather flat until about 15°C, at which point it
increased dramatically. Other models, which assumed a
threshold effect of 22°C or 25°C, did not show such dra-
matic decreases in the air pollution effect.

Conclusions: Weather had such a profound effect on the
particle associations for several possible reasons: (1) the
results represent the true effect for temperature that was

* A list of abbreviations and other terms appears at the end of the section.

This short communication report is part of an HEI Special Report, which
also includes 20 other reports, a section on NMMAPS II, two HEI Commen-
taries, and an HEI Statement. Please address correspondence about this sec-
tion to Dr Mark S Goldberg, Department of Medicine and Joint Departments
of Epidemiology and Biostatistics and Occupational Health, McGill Univer-
sity, 1020 Pine Ave West, Room 17A, Montreal, Quebec, Canada H3A 1A2.

Health Effects Institute © 2003

missed in our original generalized additive model (GAM)
analysis because concurvity among covariates was not
detected; (2) temperature affects mortality but has a
threshold response function (effectively zero below rea-
sonably high values of near 22°C or 25°C), so the natural
spline models overfit the data and hence remove the air
pollution effect; and (3) 1 and 2 are correct to varying
degrees, but the observed confounding effects were accen-
tuated because of transference of causal effects from less-
precisely to more-precisely measured variables. Prior
knowledge of the effects of weather on mortality and other
health outcomes would greatly benefit the development of
strategies for selecting the appropriate functional form for
weather in the presence of modest correlations between
covariates. It is also clear that GAMs do not always provide
unbiased estimates of effect and should not be used until
the GAM backfitting algorithm has been corrected.

INTRODUCTION

This short communication describes the results of a
revised analysis of the association between particle mass
and nonaccidental mortality in Montreal from January 1,
1984 to December 31, 1993. The original study was
divided into two parts, each of which used a different def-
inition of nonaccidental mortality: (1) cause-specific daily
mortality and (2) nonaccidental daily mortality, stratified
by underlying health conditions subjects had before death
(as defined from data from the Quebec Health Insurance
Plan [QHIP]). The description of the original analysis and
results were published as HEI Research Report 97 (1) and
in other journal articles (2,3,4,5), and one new paper is in
press regarding congestive heart failure.

METHODS USED IN THE ORIGINAL STUDY

The results in the original publications were based on
time-series analyses that provided estimates of the
association between daily variations in mortality with daily
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variations in air particulates, after controlling for seasonal
and subseasonal trends in the mortality time series, daily
weather, and gaseous pollutants. We used the GAM
framework (using LOESS for all continuous covariates) and
selected the span for the LOESS temporal filter that
minimized for the residuals the Bartlett test for white noise
(6). The weather variables were selected among those (mean
temperature, dew point temperature, change in temperature
from the previous day, change in barometric pressure from
the previous day) across lags 0-5 days for which the value of
the AIC was minimized (using a span of 50%).

STATISTICAL METHODS

SCOPE OF THE REANALYSIS

For all of the reanalyses presented here, the air pollu-
tion, mortality, and QHIP data are identical to those used
in the original publications. The revised analysis was
guided by the finding of two errors in the implementation
of the GAM backfitting algorithm: insufficiently stringent
default convergence criteria (7) and an inability to account
for nonlinear correlations between independent variables
(referred to as concurvity) (8). We believe that the imple-
mentation of GAM yielded biased estimates of effect and
variances when there are sufficiently strong correlations
among covariates, as in the Montreal data. Nevertheless, as
requested by the US Environmental Protection Agency
(EPA), we have reanalyzed our data using the same func-
tional forms of the original GAMs with more strict conver-
gence criteria (epsil on and bf.epsilon = 10715
maxit and bf.maxit = 1000).

The scope of the analysis agreed to with HEI was to
attempt to reproduce all relevant tables and figures in the
report. Because of severe time constraints, it was recognized
that judicious selection of reanalyses of tables and graphs in
the original report was necessary and, consequently, this
reanalysis covers only certain key features of the original
HEI Research Report (7). In particular, we did not reanalyze
cause-specific mortality except for all nonaccidental mor-
tality; rather, we focused on the analysis of those subgroups
(defined using QHIP data [part 2 of the original report]) that
showed associations with particles. In addition, we discov-
ered during the reanalysis that our original assumptions
concerning confounding by weather were being seriously
challenged and we thus decided to undertake a series of
comprehensive sensitivity analyses to appreciate how dif-
ferent models for weather affect our findings.
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REVISED ANALYSIS METHODS: USING NATURAL
SPLINES TO MODEL CONTINUOUS COVARIATES

In place of the LOESS in the original GAM, we used para-
metric natural spline models within the context of general-
ized linear models (GLMs) (9) to capture the potentially
nonlinear effects of time and weather on daily mortality.
The natural spline models are defined by the degrees of
freedom, which are given by the number of knots plus two.
The knots are placed evenly throughout the distribution of
the variable. Natural spline models have been shown to per-
form well in time-series mortality studies, as compared with
LOESS and nonparametric spline smoothers, in terms of
lack of bias in the air pollution effect estimate and the asso-
ciated standard errors.

The amount of smoothing needed when applying a nat-
ural spline function equivalent to that of a LOESS function
is difficult to define. Both have a concept of degrees of
freedom but nonparametric smoothers are defined in a
manner that fits the data better than parametric functions,
like natural splines, for the same degrees of freedom. The
LOESS function was therefore not replaced with a natural
spline having the same number of degrees of freedom.
Moreover, because the issue of collinearity was not
accounted for properly in the GAM backfitting algorithm,
we needed to start the modeling anew. Thus, we used the
same type of modeling approach as used in the original
analyses both to select the degrees of freedom for the nat-
ural splines for the temporal filter as well as for the
weather variables.

Unlike the original analysis, however, we added day of
the week as an indicator variable and, as before, included a
term for calendar year if it improved the fit. For each sepa-
rate time series, we found the degrees of freedom for the
natural spline function on time that produced a minimum
value of the Bartlett test for white noise. The number of
days with information in a time series was defined as the
intersection of the number of days of data for mortality and
for the pollutant (we had complete data for weather). A dif-
ferent number of degrees of freedom for the temporal
smoother could thus be found for the same endpoint if the
number of days with information was different; for
example, comparing six-day total suspended particles
(TSP) data to every-day data for coefficient of haze (COH).
We evaluated a wide range of degrees of freedom before
selecting the final one. Table 1 shows an example of this
approach for all nonaccidental mortality (complete time
series); 88 df (8.8 per year, shown in bold type) was
selected in this case.



MS Goldberg and RT Burnett

To select the relevant weather variables, we conducted a
series of univariate analyses using natural splines, evalu-
ated over lags of 0 to 5 days and a maximum of 6 df,
adjusting only for temporal trends. We perused these
models and selected variables that yielded the minimum
AIC. We then investigated pairs of variables and selected
the model with the minimum AIC. Table 2 shows the selec-
tion procedure for the pairs of weather variables used in the
analysis for nonaccidental mortality, and Table 3 shows the
modeling of the selected weather variables: mean tempera-
ture (4 df, lag 0) and relative humidity (linear effect, lag 2).
Table 4 shows an example of the different models selected
for nonaccidental mortality and the different pollutants.

Because we ended up using a larger number of degrees of
freedom than most other investigators (perhaps due to the
large seasonal cycles in our data; Figures 1-3), we also con-
ducted sensitivity analyses using other degrees of freedom.

REVISED ANALYSIS RESULTS

Nonaccidental Mortality

Table 5 shows the original results, those from stricter
convergence criteria used in the GAMs, and those of the
revised analysis based on natural splines (based on Table 15
of the original report). (Appendix Table A.1 shows the
distribution of environmental pollutants.) The analyses

Table 1. Daily Nonaccidental Mortality: Selection of the Degrees of Freedom for the Natural Spline (ns) Filter, with Day

of the Week and Calendar Year Entered into the Model

Serial Autocorrelation Coefficients

ns df Dispersion Bartlett P value AIC Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6
81 1.09 1.271 0.079 4095.1 0.0379 —0.0045 0.0008 —0.0233 —0.0207 —0.0044
86 1.09 1.194 0.116 4093.7 0.0349 —0.0074 —0.0021 —0.0263 —0.0235 —0.0071
91 1.08 1.015 0.254 4076.0 0.0279 —0.0147 —0.0091 —0.0334 —0.0302 —0.0136
96 1.08 1.087 0.188 4065.7 0.0226 —0.0201 —0.0144 —0.0388 —0.0356 —0.0186
101 1.08 1.162 0.134 4071.0 0.0211 —0.0215 —0.0157 —0.0401 —0.0369 —0.0199
80 1.09 1.137 0.15 4071.6 0.0327 —0.0098 —0.0043 —0.0286 —0.0257 —0.0091
82 1.09 1.147 0.14 4077.4 0.0330 —0.0093 —0.0040 -—0.0281 —0.0252 —0.0087
83 1.09 1.155 0.14 4080.5 0.0333 —0.0091 —0.0036 —0.0280 —0.0250 —0.0084
84 1.09 1.133 0.15 4080.3 0.0325 —0.0098 —0.0043 —0.0285 —0.0258 —0.0092
85 1.09 1.044 0.23 4068.0 0.0291 —0.0136 —0.0079 —0.0321 —0.0292 —0.0125
86 1.09 1.194 0.12 4093.7 0.0349 —0.0074 —0.0021 —0.0263 —0.0235 —0.0071
87 1.09 1.047 0.22 4072.7 0.0292 —0.0134 —0.0077 —0.0321 —0.0290 —0.0124
88 1.08 1.001 0.27 4054.5 0.0243 —0.0184 —0.0126 —0.0369 —0.0338 —0.0169
89 1.08 0.999 0.27 4070.0 0.0273 —0.0153 —0.0095 —0.0338 —0.0309 —0.0141
Table 2. Daily Nonaccidental Mortality: Selection of the Combination of Weather Variables®

First Weather Variable Second Weather Variable

Lag df Lag df Dispersion AIC

Mean temperature 0 4 Mean RH 2 0 1.05 3943.0
Mean temperature 0 4 Change in pressure 0 5 1.05 3943.8
Maximum temperature 0 4 Change in pressure 0 5 1.05 3955.7
Maximum temperature 0 4 Mean RH 2 0 1.05 3959.9
Dew point 0 3 Mean RH 2 0 1.06 3966.1
Dew point 0 3 Change in pressure 0 5 1.06 3972.1
Mean RH 2 0 Change in pressure 0 5 1.07 4023.0

8 RH = relative humidity.
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Table 3. Daily Nonaccidental Mortality: Example of Modeling the Weather Variables?

Change in
Residual Residual Change Likelihood Ratio
Model Deviance Deviance in df Test P value AIC
Base 3840.3 NAP NAP NAP 4036.0
+ Mean temperature 3748.4 91.95 4 0.0 3947.9
(lag 0, natural spline with 4 df)
+ Relative humidity 3736.9 8.93 1 0.003 3940.2

(lag 2, linear effect)

@ Base model includes coefficient of haze as a linear effect, temporal filter using natural spline with 88 df and calendar year as a linear effect.

b NA = not applicable.

using the stricter convergence criteria produced slightly
lower estimates than the original analysis; however, the
conclusions would not have been altered had this approach
been used. Results using the natural spline approach yielded
attenuated and statistically nonsignificant estimates of
effect for the five sets of particle metrics presented, and
inclusion of day of the week reduced the estimates further.
Figures 4 through 6 compare the original analysis and
reanalysis for each lag considered and Figures 7 and 8
show the analyses for the warm and cold seasons,
respectively. Table 6 shows little effect of using different
temporal filters and degrees of freedom for mean
temperature on the results.

Figure 9 shows the functional form of mean temperature
using 2 dfand 4 df and shows that the effect of temperature
increases dramatically starting around 10°C and 15°C,
respectively (these temperatures correspond roughly to a
maximum daily temperature of between 13-20°C and 16—
26°C, respectively; the Pearson correlation between mean
temperature and maximum temperature is 0.99). (Note that
the models shown in Figure 9 included a natural spline of
mean temperature with 4 df; we observed no differences in
the effects on pollutants using 2 df [data not shown].) The
response function for temperature was rather different than
the slowly increasing curve produced in our original GAM
analyses (data not shown), which suggests why our air pol-
lution effects are highly attenuated. Figure 10 shows that
only one weather variable (mean temperature) greatly
affected the findings for particulates and nonaccidental
mortality. Mean temperature had such a profound effect on
the particle associations for several possible reasons: 1) the
results represent the true effect for temperature that was
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missed in our original GAM analysis because concurvity
among covariates was not taken into account in the backfit-
ting algorithm; 2) temperature affects mortality but has a
threshold response function (effectively zero below
approximately 22°C or 25°C), so the natural spline models
overfit the data and hence remove the air pollution effect;
and 3) 1 and 2 are correct to varying degrees, but the
observed confounding effects were accentuated because of
transference of causal effects from less-precisely to more-
precisely measured variables (10). Air pollution measure-
ments were least accurate, followed by weather and time;
some of the effects on air pollution could have been trans-
ferred to the other two variables.

Empirical testing of the third hypothesis is impossible,
but hypothesis 2 may be correct. (We do not have extensive
knowledge of the biology of acute temperature effects.)
Threshold models do exist (11), but we did not have time to
investigate these. Instead, we developed a series of sensi-
tivity analyses using various functional forms for tempera-
ture assuming no effects below a certain limit. (These are not
true threshold models, as the threshold is not estimated from
the data.) Essentially, these models are akin to including
covariates for so-called extreme temperature days, except
that we modeled them as linear covariates as follows:

HT<Ty, T'"=0andif T=Tythen T'=T — T,.

(We refer to these as quasithreshold models.) Two values of
T, were used: 22°C (corresponding to a maximum tempera-
ture of between 23°C and 30°C [7% of the data above this
value]) and 25°C (corresponding to a maximum temperature
of between 27°C and 31°C [1.4% of the data above this
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Table 4. Daily Nonaccidental Mortality: Example Showing Different Selected Temporal Filters, Calendar Year, and
Weather Variables (all ages and entire time period)

Temporal
Filter
(natural Calendar Weather Variables

Pollutant spline df) Year (lag, df)
Nonaccidental Mortality
Gaseous pollutants and COH? 88 Numeric Mean temperature(0, 4) + mean relative humidity(2, 1)
Extinction 92 Numeric Mean temperature(0, 5) + mean relative humidity(2, 1)
Predicted PM, 5 and 74 Factor Mean temperature(0, 5) + mean relative humidity(2, 1)

Sulfates from PM, 5
Sutton Sulfate 70 None Mean temperature(0, 5) + mean relative humidity(2, 1)
Cancer Subgroupb
Gaseous pollutants and COH? 68 None Mean temperature(0, 3) + mean relative humidity(1, 2)
Predicted PM, 5 and 23 None Maximum temperature(0, 3) + change in pressure(0, 6)

Sulfates from PM, 5
Sutton Sulfate 50 None Mean temperature(0, 2) + mean relative humidity(1, 2)

Acute Lower Respiratory Subgroupb

Gaseous pollutants and COH? 43 None Mean temperature(1, 4) + mean relative humidity(2, 0)

Predicted PM, 5 and 52 Numeric Dew point temperature(0, 5) + mean relative humidity(2, 0)
Sulfates from PM, 5

Sutton Sulfate 47 None Mean temperature(1, 4) + change in pressure(0, 0)

Chronic Coronary Artery Disease Subgroupb

Gaseous pollutants and COH? 49 Numeric Mean temperature(0, 7) + change in pressure(0, 2)

Predicted PM, 5 and 36 None Mean temperature(0, 3) + mean relative humidity(2, 0)
Sulfates from PM, 5

Sutton Sulfate 42 None Mean temperature(0, 3) + mean relative humidity(2, 0)

Congestive Heart Failure Subgroupb

Gaseous pollutants and COH? 39 Numeric Maximum temperature(1, 5) + mean relative humidity(1, 0)

Predicted PM, 5 and 37 Factor Maximum temperature(1, 7) + mean relative humidity(0, 0)
Sulfates from PM, 5

Sutton Sulfate 37 Factor Maximum temperature(1, 4) + mean relative humidity(1, 0)

Any Coronary Artery Disease Subgroupb

Gaseous pollutants and COH? 27 None Maximum temperature(0, 4) + change in pressure(2, 0)

Predicted PM, 5 and 30 None Mean temperature(0, 3) + mean relative humidity(2, 7)
Sulfates from PM, 5

Sutton Sulfate 30 None Mean temperature(0, 3) + mean relative humidity(2, 0)

Any Cardiovascular Disease Subgroupb

Gaseous pollutants and COH? 58 None Mean temperature(0, 7) + mean relative humidity(1, 0)

Predicted PM, 5 and 52 None Mean temperature(0, 6) + mean relative humidity(2, 0)
Sulfates from PM, 5

Sutton Sulfate 50 None Mean temperature(0, 7) + mean relative humidity(1, 0)

8 COH = coefficient of haze.

b Subgroup defined from Quebec Health Insurance Plan.
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Figure 1. Time series for daily nonaccidental mor- Figure 2. Time series for mean daily temper- Figure 3. Time series for coefficient of haze,
tality, Montreal, 1984 to 1993. ature, Montreal, 1984 to 1993. Montreal, 1984 to 1993.

Table 5. Daily Nonaccidental Mortality: Comparison of Original Results to Those Obtained Using 1) Stricter
Convergence Criteria for GAM (original functional forms retained), 2) Natural Splines for Temporal Filter and Weather
Variables, 3) Natural Splines for Temporal Filter, Weather Variables and Day of the Week. Mean Percent Change in Daily
Nonaccidental Mortality for Different Measures of Particulates Evaluated at the 3-Day Mean Across Interquartile Ranges
of Various Pollutants, Montreal, 1984 to 19932

Predicted Sulfate
COHP Extinction Predicted PM, 5 Sutton Sulfate from PM, 5

Cause of Death Original Reanalysis Original Reanalysis Original Reanalysis Original Reanalysis Original Reanalysis

1) GAM with Stricter Convergence Criteria (epsi | on and bf.epsilon = 10715, naxit and bf.maxit = 1000)

Nonaccidental — 1.98¢ 1.38¢ 1.67¢ 1.34¢ 2.17¢ 1.57¢ 1.29¢ 1.03¢ 1.59¢ 1.20¢
deaths

=65 years 2.57° 1.92¢ 1.96° 1.59¢ 2.68° 1.97¢ 1.77¢ 1.46° 2.11° 1.65¢

< 65 years 0.30 —0.30 0.88 0.50 1.03 0.28 0.04 —0.36 0.27 —0.25

2) GLM with Natural Splines Using Pollutant-Specific Temporal Filters

Nonaccidental — 1.98¢ 0.85 1.67¢ 0.50 2.17°¢ 0.55 1.29¢ 0.27 1.59°¢ 0.41
deaths

= 65 years 2.57¢ 1.17 1.96¢ 0.73 2.68° 0.84 1.77¢ 0.69 2.11°¢ 0.71

< 65 years 0.30 —0.64 0.88 0.19 1.03 0.04 0.04 —0.36 0.27 —0.49

3) GLM with Natural Splines Using Pollutant-Specific Temporal Filters and Day of the week

Nonaccidental — 1.98¢ 0.58 1.67¢ 0.49 2.17¢ 0.46 1.29¢ 0.29 1.59¢ 0.41
deaths

= 65 years 2.57¢ 0.85 1.96° 0.70 2.68° 0.70 1.77° 0.70 2.11¢ 0.69

< 65 years 0.30 —0.84 0.88 0.21 1.03 0.08 0.04 —0.34 0.27 —0.46

2 The original statistical model was E[log(y i )] = o« + LOESS(i, span=x) + LOESS(year) + multiple weather variables + B(pollutant), where i is an indicator for
day and x is the selected span (%). Sulfate data from the Sutton monitoring station were available only for 1986 to 1993.

b COH = coefficient of haze.

¢ Corrected t value >1.96.
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Figure 4. Daily nonaccidental deaths: Comparison of
original and reanalysis (using natural splines) for all
ages. Mean percent increase in daily mortality eval-
uated at lag 0 across interquartile ranges of various
pollutants, Montreal, 1984 to 1993. COH = coeffi-
cient of haze.
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Figure 5. Daily nonaccidental deaths: Comparison
of original and reanalysis (using natural splines)
for all ages. Mean percent increase in daily mor-
tality evaluated at lag 1 across interquartile
ranges of various pollutants, Montreal, 1984 to
1993. COH = coefficient of haze.
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Figure 6. Daily nonaccidental deaths: Com-
parison of original and reanalysis (using nat-
ural splines) for all ages. Mean percent
increase in daily mortality evaluated at the 3-
day mean across interquartile ranges of var-
ious pollutants, Montreal, 1984 to 1993. COH
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Figure 7. Daily nonaccidental deaths for the warm season: Reanalysis
(using natural splines) for all ages. Mean percent increase in daily mor-
tality evaluated at lag 0, lag 1, and the 3-day mean across interquartile
ranges of various pollutants, Montreal, 1984 to 1993. COH = coefficient of
haze.

value]). Table 7 shows sensitivity analyses for COH evalu-
ated at lag 0 days. (The AIC was adjusted to account for the
implicit threshold value included in the model by adding 2
[2 X 1 df] for each implicit threshold.) The reanalysis unad-
justed for weather showed a lower effect than those found in
the adjusted models from the original GAM analysis (mean
percent change [MPC] of 1.19% vs 1.45%). In the present
reanalyses, relative humidity had little effect on air pollu-
tion and inclusion of the quasithreshold model showed only
slightly attenuated effects for COH (as Ty was reduced, so
were the estimates for COH): for T, = 22°C, MPC = 0.89%;
for T,y = 25°C, MPC = 1.09%.

To relate our new findings to other studies, we reex-
pressed the MPC for a 10 ng/m? increase in predicted
PM, 5 (particulate matter less than 2.5 pm in diameter).

= coefficient of haze.
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Figure 8. Daily nonaccidental deaths for the cold season: Reanalysis
(using natural splines) for all ages. Mean percent increase in daily mor-
tality evaluated at lag 0, lag 1, and the 3-day mean across interquartile
ranges of various pollutants, Montreal, 1984 to 1993. COH = coefficient
of haze.

For all deaths, the percent increase in daily mortality was
0.46 per 10 pg/m?®, and for deaths among persons aged 65
years or more the percent increase in daily mortality was
0.74 per 10 png/m?®, which is within the observed range in
North America.

Subgroups Defined Using QHIP Data

For all subgroups (see part 2 of the original report [1]), we
conducted analyses analogous to those for all nonaccidental
mortality in which we found positive effects (cancer, acute
lower respiratory diseases, chronic coronary artery disease,
congestive heart failure, any coronary artery diseases, and
any cardiovascular disease; see Table 22 of the original
report). In addition, we conducted detailed analyses for the
warm season among subjects aged 65 years or more.
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Table 6. Daily Nonaccidental Mortality: Sensitivity Analyses Comparing Different Temporal Filters. Mean Percent
Change in Daily Nonaccidental Mortality for Coefficient of Haze (COH) Evaluated at Lag 0 Across Interquartile Ranges,
Montreal, 1984 to 1993

P value for
Model®P Bartlett AIC Dispersion MPC® 95% CI
42 df
M; 0.001 4110.05 1.107
M; + COH 0.002 4103.92 1.105 1.14 0.32—1.96
M, + COH + ns(mt, 2 df) 0.008 4046.66 1.089 0.44 —0.40-1.28
M, + COH + ns(mt, 4 df) 0.040 4008.68 1.078 0.47 —0.36-1.31
88 df
M; 0.263 4044.17 1.076
M,; + COH 0.263 4037.22 1.073 1.19 0.37-2.02
M; + COH + ns(mt, 2 df) 0.333 3984.35 1.058 0.43 —0.42-1.27
M, + COH + ns(mt, 4 df) 0.250 3947.32 1.048 0.47 —0.37-1.32
122 df
My 0.041 4074.34 1.074
M; + COH 0.040 4066.64 1.071 1.24 0.41-2.07
M, + COH + ns(mt, 2 df) 0.039 4007.53 1.005 0.39 —0.46—1.24
M, + COH + ns(mt, 4 df) 0.028 3974.70 1.046 0.44 —0.41-1.29

M, = Year + Day of the Week + ns(time, XX df).

b ns = natural spline, mt = mean temperature.

¢ Mean percent change across the interquartile range of COH.
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Figure 9. Daily nonaccidental mortality: Functional form for mean temperature (°C) (A) using natural splines with 2 df and (B) using natural splines
with 4 df (ns = natural spline).
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Figure 10. Daily nonaccidental deaths: Results for different weather
models (using natural splines) for all ages. Mean percent increase in
daily mortality evaluated at the 3-day mean across interquartile ranges
of various pollutants, Montreal, 1984 to 1993. COH = coefficient of haze.

Table 8 shows, for pollutants evaluated at the 3-day
mean, that the use of the more stringent convergence
criteria attenuated the effects, although in most cases the
original conclusions were not altered (except for cancer
and predicted PM, 5; chronic coronary disease and all three
pollutants, congestive heart failure and Sutton sulfate; any
coronary disease and predicted PM, 5; and any coronary

disease and Sutton sulfate). All analyses using natural
splines showed nonsignificant effects for air pollution.
Figures 11 through 16 compare for each lag the original
findings (panel A) to the results from the reanalysis (panel
B) for each of these subgroups. Except for any cardiovas-
cular disease evaluated at lag 1 (Figure 16B), all of the new
results were not significantly different from no effect.

We also conducted analyses for the warm season (Fig-
ures 17—22) and found significant positive associations for
congestive heart failure only (COH, extinction, predicted
PM, 5, predicted sulfate from PM, 5; these same findings
are in press in Environmental Research).

Tables 9 and 10 show the sensitivity analyses for the COH,
evaluated at lag 0 days, for different methods of adjusting for
mean temperature and relative humidity. Table 9 refers to
deaths during the entire year for all age groups and Table 10
refers to deaths during the warm season among subjects aged
65 years or more. We compared models using natural splines
to those assuming no temperature effects below 22°C or 25°C
and no relative humidity effects below 88%. Relative
humidity had little effect on estimates and larger pollutant
effects were found for models using a 25°C cutoff.

Considering the cutoff model of 25°C as the most plau-
sible, we found a significant association for the entire year
(Table 9) only for any cardiovascular disease; for the warm
period (Table 10), we found positive associations for chronic
coronary artery disease, congestive heart failure, any coro-
nary artery disease, and any cardiovascular disease.

Table 7. Daily Nonaccidental Mortality: Sensitivity Analyses Comparing Different Weather Models. Mean Percent
Change in Daily Nonaccidental Mortality for Coefficient of Haze (COH) Evaluated at Lag 0 Across Its Interquartile Range,

Montreal, 1984 to 1993

P value for

Model? Bartlett AIC Dispersion ~ MPCP 95% CI

Original analysis 1.45 0.76—2.14
Base 0.263 4037.22 1.073 1.19 0.37—2.02
Base + ns(mt, 2 df) 0.333 3984.35 1.058 0.43 —0.42-1.27
Base + ns(mt, 4 df) 0.250 3947.32 1.048 0.47 —0.37-1.32
Base + ns(RHMean, 2 df) 0.273 4040.61 1.074 1.10 0.25—1.95
Base + ns(mt, 2 df) + ns(RHMean, 2 df) 0.336 3988.16 1.059 0.36 —0.49-1.23
Base + B=0*(mt < 22) + B*(mt — 22) 0.186 3979.33 1.057 0.89 0.07-1.71
Base + B=0*(mt < 25) + B*(mt — 25) 0.253 4016.07 1.067 1.09 0.27-1.92
Base + B=0*(RHMean < 88) + B*(RHMean — 88) 0.266 4040.63 1.073 1.14 0.31-1.98
Base + B=0*(mt < 25) + B*(mt — 25) + B=0*(RHMean 0.257 4019.39 1.067 1.04 0.21-1.88

< 88) + B*(RHMean — 88)

@ Base = COH + year + day of the week + ns(time, 88 df); ns = natural spline, mt = mean temperature, RHMean = mean relative humidity.

b Mean percent change across the interquartile range of COH.
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Table 8. Subgroups Defined Using Quebec Health Insurance Plan Data: Comparison of Original Results to Those
Obtained Using 1) Stricter Convergence Criteria for GAM (original functional forms retained), 2) Natural Splines for
Temporal Filter, Day of the Week, and Weather Variables. Mean Percent Change (MPC) in Daily Nonaccidental Mortality
for Different Measures of Particulates Evaluated at the 3-Day Mean Across Interquartile Ranges of Various Pollutants,
Montreal, 1984 to 1993

COH? Predicted PM, 5 Sutton Sulfate

Morbidity MPC 95% CI MPC 95% CI MPC 95% CI

Cancer

Original 2.42 0.87—4.00 1.84 0.33-3.37 0.89 —0.12-1.92

Original more stringent 1.76 0.22-3.33 1.00 —0.50-2.52 0.52 —0.49-1.54
convergence criteria

Reanalysis 0.46 —1.62-2.59 0.93 —0.93-2.84 0.22 —1.01-1.48

Acute lower respiratory disease

Original 5.09 2.47-7.79 4.72 2.23-7.28 2.25 0.56-3.98

Original more stringent 4.18 1.58-6.84 3.67 1.21-6.20 1.68 —0.01-3.39
convergence criteria

Reanalysis 2.20 —1.04-5.55 —0.01 —3.37-3.47 0.10 —2.05-2.29

Chronic coronary artery disease

Original 2.62 0.53-4.75 2.20 0.14-4.31 0.63 —0.77-2.06

Original more stringent 1.94 —0.14-4.07 1.36 —0.70-3.45 0.22 —1.18-1.65
convergence criteria

Reanalysis 1.10 —1.65-3.93 0.48 —2.30-3.34 —0.10 —1.81-1.64

Congestive heart failure

Original 4.99 2.44-7.60 4.02 1.61-6.48 1.91 0.28-3.56

Original more stringent 4.14 1.61-6.73 2.98 0.60-5.42 1.34 —0.27-2.99
convergence criteria

Reanalysis 2.15 —1.08-5.47 1.60 —1.62—-4.92 0.65 —1.33-2.66

Any coronary artery disease

Original 2.99 1.13-4.88 1.85 0.03-3.70 0.69 —0.55-1.95

Original more stringent 2.26 0.41-4.15 0.96 —0.85-2.80 0.23 —1.01-1.48
convergence criteria

Reanalysis 1.39 —0.95-3.79 0.44 —1.97-2.91 0.08 —1.38-1.56

Any cardiovascular disease

Original 3.65 2.23-5.09 2.76 1.40-4.15 1.16 0.23-2.09

Original more stringent 2.73 1.32—4.15 1.74 0.39-3.11 0.69 —0.23-1.62
convergence criteria

Reanalysis 1.73 —0.15-3.65 1.14 —0.74-3.05 0.12 —1.04-1.30

2 COH = coefficient of haze.
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Figure 11. Cancer defined using Quebec Health Insurance Plan data: Findings for all ages, evaluated at lag 0, lag 1 and 3-day mean across interquartile
ranges of various pollutants, Montreal, 1984 to 1993. A. Original findings. B. Reanalysis. COH = coefficient of haze.
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Figure 12. Acute lower respiratory disease defined using Quebec Health Insurance Plan data: Findings for all ages, evaluated at lag 0, lag 1 and 3-day
mean across interquartile ranges of various pollutants, Montreal, 1984 to 1993. A. Original findings. B. Reanalysis. COH = coefficient of haze.
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Figure 13. Chronic coronary artery disease defined using Quebec Health Insurance Plan data: Findings for all ages, evaluated at lag 0, lag 1 and 3-day
mean across interquartile ranges of various pollutants, Montreal, 1984 to 1993. A. Original findings. B. Reanalysis. COH = coefficient of haze.
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Figure 14. Congestive heart failure defined using Quebec Health Insurance Plan data: Findings for all ages, evaluated at lag 0, lag 1 and 3-day mean
across interquartile ranges of various pollutants, Montreal, 1984 to 1993. A. Original findings. B. Reanalysis. COH = coefficient of haze.
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Figure 15. Any coronary artery disease defined using Quebec Health Insurance Plan data: Findings for all ages, evaluated at lag 0, lag 1 and 3-day
mean across interquartile ranges of various pollutants, Montreal, 1984 to 1993. A. Original findings. B. Reanalysis. COH = coefficient of haze.
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Figure 16. Any cardiovascular disease defined using Quebec Health Insurance Plan data: Findings for all ages, evaluated at lag 0, lag 1 and 3-day mean
across interquartile ranges of various pollutants, Montreal, 1984 to 1993. A. Original findings. B. Reanalysis. COH = coefficient of haze.
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Figure 17. Cancer defined using Quebec Health Insurance Plan
data: Reanalysis findings for subjects 65 years old and older, in
the warm season by lag, evaluated at interquartile ranges of var-
ious pollutants, Montreal, 1984 to 1993. COH = coefficient of haze.
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Figure 19. Chronic coronary artery disease defined using Quebec
Health Insurance Plan data: Reanalysis findings for subjects 65
years old and older, in the warm season by lag, evaluated at
interquartile ranges of various pollutants, Montreal, 1984 to
1993. COH = coefficient of haze.
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Figure 21. Any coronary artery disease defined using Quebec
Health Insurance Plan data: Reanalysis findings for subjects 65
years old and older, in the warm season by lag, evaluated at inter-
quartile ranges of various pollutants, Montreal, 1984 to 1993.
COH = coefficient of haze.
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Figure 18. Acute lower respiratory disease defined using Quebec
Health Insurance Plan data: Reanalysis findings for subjects 65 years
old and older, in the warm season by lag, evaluated at interquartile
ranges of various pollutants, Montreal, 1984 to 1993. COH = coeffi-
cient of haze.
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Figure 20. Congestive heart failure defined using Quebec Health
Insurance Plan data: Reanalysis findings for subjects 65 years old
and older, in the warm season by lag, evaluated at interquartile
ranges of various pollutants, Montreal, 1984 to 1993. COH = coeffi-
cient of haze.
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Figure 22. Any cardiovascular disease defined using Quebec
Health Insurance Plan data: Reanalysis findings for subjects 65
years old and older, in the warm season by lag, evaluated at inter-
quartile ranges of various pollutants, Montreal, 1984 to 1993. COH
= coefficient of haze.

125



Short Communication Report

Table 9. Subgroups Defined Using Quebec Health Insurance Plan Data: Sensitivity Analysis for Coefficient of Haze
(COH) for Entire Time Period Using Different Models for Weather. Mean Percent Change in Daily Nonaccidental
Mortality Evaluated at Lag 0 Across the COH Interquartile Range, Montreal, 1984 to 1993

P value for
Model®P Bartlett AIC Dispersion MPC® 95% CI
Cancer
Base 0.311 3853.39 1.021 1.48 0.07-2.92
Base + ns(mt, 2 df) 0.430 3827.68 1.012 0.53 —0.92-2.00
Base + ns(mt, 3 df) 0.452 3823.78 1.012 0.54 —0.91-2.02
Base + ns(mt, 4 df) 0.450 3825.63 1.012 0.54 —0.91-2.02
Base + ns(RHMean, 2 df) 0.325 3856.52 1.021 1.32 —0.13-2.79
Base + ns(mt, 2 df) + ns(RHMean, 2 df) 0.437 3830.41 1.013 0.36 —1.12-1.86
Base + B=0*(mt < 22) + B*(mt — 22) 0.378 3843.13 1.017 1.22 —0.20-2.66
Base + B=O*(mt < 25) + B*(mt —25) 0.306 3851.70 1.019 1.40 —0.01-2.84
Base + B=O*(RHMean < 88) + B*(RHMean —88) 0.313 3857.40 1.021 1.45 0.03-2.90
Base + B=0*(mt < 25) + p*(mt — 25) + B=0*(RHMean  0.308 3855.69 1.019 1.37 —0.05-2.82
< 88) + B*(RHMean — 88)
Acute Lower Respiratory
Base 0.589 4001.31 1.014 —0.05 —2.33-2.28
Base + ns(mt, 2 df) 0.560 3999.10 1.013 —0.78 —3.12-1.62
Base + ns(mt, 4 df) 0.447 3982.47 1.009 —0.79 —3.13-1.60
Base + ns(mt(lag 1), 4 df) 0.524 3976.24 1.008 —0.38 —2.68-1.97
Base + ns(RHMean, 2 dﬂ 0.587 4005.02 1.015 —0.13 —2.46-2.25
Base + ns(mt, 2 df) + ns(RHMean, 2 df) 0.558 4002.88 1.013 —0.85 —3.23-1.60
Base + B=0*(mt < 22) + p*(mt — 22) 0.496 3990.41 1.011 —0.53 —2.81-1.80
Base + B=0*(mt < 25) + B*(mt — 25) 0.490 3988.47 1.009 —0.33 —2.61-1.99
Base + B=0*(RHMean < 88) + B*(RHMean — 88) 0.584 4004.86 1.014 0.05 —2.25-2.40
Base + RHMean + B=0*(RHMean < 88) + 0.591 4006.44 1.014 —0.10 —2.43-2.29
B*(RHMean — 88)
Base + B=0*(mt < 25) + p*(mt — 25) + B=0*(RHMean  0.484 3992.07 1.009 —0.24 —2.53-2.11
< 88) + B*(RHMean — 88)
Chronic Coronary Artery Disease
Base 0.489 3724.28 0.965 1.51 —0.38—-3.42
Base + ns(mt, 2 df) 0.507 3723.54 0.964 0.94 —1.00-2.92
Base + ns(mt, 4 df) 0.557 3713.25 0.960 0.96 —0.98-2.94
Base + ns(mt, 7 df) 0.537 3712.16 0.959 0.95 —0.99-2.93
Base + ns(RHMean, 2 df) 0.486 3728.19 0.965 1.52 —0.42-3.49
Base + ns(mt, 2 df) + ns(RHMean, 2 df) 0.501 3727.31 0.964 1.02 —0.96-3.04
Base + B=0*(mt < 22) + p*(mt — 22) 0.461 3721.11 0.962 1.24 —0.65-3.17
Base + B=0*(mt < 25) + B*(mt — 25) 0.476 3723.12 0.963 1.39 —0.50-3.31
Base + B=0*(RHMean < 88) + B*(RHMean — 88) 0.486 3728.17 0.965 1.54 —0.36-3.48
Base + RHMean + B=0*(RHMean < 88) + 0.487 3730.12 0.965 1.53 —0.41-3.50
B*(RHMean — 88)
Base + B=0*(mt < 25) + p*(mt — 25) + B=0*(RHMean  0.476 3727.02 0.963 1.42 —0.48-3.36

< 88) + B*(RHMean — 88)

Table continues next page

8 Base = COH + year + day of the week + ns(time, XX df).
b ns = natural spline, mt = mean temperature, RHMean = mean relative humidity.

¢ Mean percent change across the interquartile range of COH.
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Table 9 (Continued). Subgroups Defined Using Quebec Health Insurance Plan Data: Sensitivity Analysis for Coefficient
of Haze (COH) for Entire Time Period Using Different Models for Weather. Mean Percent Change in Daily Nonaccidental
Mortality Evaluated at Lag 0 Across the COH Interquartile Range, Montreal, 1984 to 1993

P value for
Model®P Bartlett AIC Dispersion MPC® 95% CI
Congestive Heart Failure
Base 0.989 3986.25 1.029 1.79 —0.45—4.08
Base + ns(mt, 2 df) 0.995 3984.41 1.028 1.03 —1.28-3.39
Base + ns(mt, 4 df) 0.991 3981.35 1.028 1.04 —1.27-3.41
Base + ns(mt, 5 df) 0.991 3983.36 1.028 1.05 —1.26-3.41
Base + ns(mt(lag 1), 5 df) 0.990 3980.92 1.028 1.49 —0.78-3.81
Base + ns(RHMean, 2 df) 0.990 3990.04 1.030 1.75 —0.55—4.09
Base + ns(mt, 2 df) + ns(RHMean, 2 df) 0.995 3988.33 1.029 1.04 —1.31-3.46
Base + B=0*(mt < 22) + B*(mt — 22) 0.994 3982.40 1.027 1.42 —0.83-3.72
Base + B=0*(mt < 25) + B*(mt — 25) 0.991 3983.62 1.028 1.61 —0.63-3.90
Base + B=0*(RHMean < 88) + B*(RHMean — 88) 0.989 3990.17 1.030 1.85 —0.41-4.16
Base + RHMean + B=0*(RHMean < 88) + 0.990 3992.06 1.030 1.76 —0.54—4.11
B*(RHMean — 88)
Base + B=0*(mt < 25) + B*(mt — 25) + B=0*(RHMean 0.992 3987.55 1.028 1.66 —0.60-3.97
< 88) + B*(RHMean — 88)
Any Coronary Artery Disease
Base 0.964 3788.03 0.999 0.83 —0.82-2.50
Base + ns(mt, 2 df) 0.964 3787.77 0.998 0.43 —1.25-2.14
Base + ns(mt, 4 df) 0.890 3779.41 0.995 0.36 —1.32-2.07
Base + ns(RHMean, 2 df) 0.963 3791.74 0.999 0.94 —0.76-2.66
Base + ns(mt, 2 df) + ns(RHMean, 2 df) 0.963 3791.15 0.998 0.58 —1.15-2.34
Base + B=0*(mt < 22) + B*(mt — 22) 0.875 3783.35 0.996 0.55 —1.10-2.23
Base + B=0*(mt < 25) + B*(mt — 25) 0.897 3785.00 0.997 0.69 —0.95-2.37
Base + B=0*(RHMean < 88) + B*(RHMean — 88) 0.964 3791.85 0.999 0.88 —0.78-2.57
Base + RHMean + 3=0*(RHMean < 88) + 0.964 3793.72 0.999 0.94 —0.75-2.67
B*(RHMean — 88)
Base + B=0*(mt < 25) + B*(mt — 25) + B=0*(RHMean 0.897 3788.85 0.997 0.74 —0.92-2.43
< 88) + B*(RHMean — 88)
Any Cardiovascular Disease
Base 0.535 3822.63 1.015 1.39 0.12-2.67
Base + ns(mt, 2 dﬂ 0.449 3809.14 1.011 0.70 —0.60-2.03
Base + ns(mt, 4 df) 0.312 3796.59 1.007 0.70 —0.60-2.02
Base + ns(mt, 7 df) 0.341 3788.37 1.005 0.68 —0.63-1.99
Base + ns(RHMean, 2 df) 0.520 3825.05 1.015 1.34 0.03-2.66
Base + ns(mt, 2 df) + ns(RHMean, 2 df) 0.433 3811.73 1.011 0.69 —0.65—2.04
Base + B=0*(mt < 22) + B*(mt — 22) 0.260 3811.07 1.011 1.13 —0.14-2.42
Base + B=0*(mt < 25) + B*(mt — 25) 0.300 3814.76 1.011 1.27 0.00-2.56
Base + B=0*(RHMean < 88) + B*(RHMean — 88) 0.515 3825.99 1.015 1.46 0.18-2.76
Base + RHMean + 3=0*(RHMean < 88) + 0.521 3827.14 1.015 1.34 0.04-2.67
B*(RHMean — 88)
Base + B=0*(mt < 25) + B*(mt — 25) + B=0*(RHMean 0.288 3818.18 1.011 1.34 0.06—2.64

< 88) + B*(RHMean — 88)

@ Base = COH + year + day of the week + ns(time, XX df).
b

¢ Mean percent change across the interquartile range of COH.

ns = natural spline, mt = mean temperature, RHMean = mean relative humidity.
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Table 10. Subgroups Defined Using Quebec Health Insurance Plan Data: Sensitivity Analysis for Coefficient of Haze
(COH) for Warm Season, Subjects Aged 65 Years or More, Using Different Models for Weather. Mean Percent Change in
Daily Nonaccidental Mortality Evaluated at Lag 0 Across the COH Interquartile Range, Montreal, 1984 to 1993

Pvalue for
Model®P Bartlett AIC Dispersion MPC® 95% CI
Cancer
Base 0.755 1945.82 1.011 2.77 —0.44-6.07
Base + ns(mt, 2 df) 0.772 1933.88 1.004 0.85 —2.58—4.39
Base + ns(mt, 4 df) 0.779 1937.39 1.005 0.83 —2.60—4.38
Base + ns(RHMean, 2 df) 0.754 1949.59 1.012 2.77 —0.47-6.12
Base + ns(mt, 2 df) + ns(RHMean, 2 df) 0.771 1937.87 1.006 0.83 —2.63—4.41
Base + B=0*(mt < 22) + p*(mt — 22) 0.759 1941.35 1.007 1.90 —1.33-5.24
Base + B=0*(mt < 25) + p*(mt — 25) 0.755 1945.60 1.009 2.47 —0.74-5.78
Base + B=0*(RHMean < 88) + B*(RHMean — 88) 0.758 1947.50 1.010 2.93 —0.28-6.25
Base + RHMean + =0*(RHMean < 88) 0.756 1949.25 1.011 2.80 —0.44-6.15
+ B*(RHMean — 88)
Base + B=0*(mt < 25) + p*(mt — 25) 0.759 1947.37 1.008 2.63 —0.59-5.95
+ B=0*(RHMean < 88) + B*(RHMean — 88)
Acute Lower Respiratory
Base 0.497 2124.84 1.033 3.90 —1.20-9.26
Base + ns(mt, 2 df) 0.375 2106.69 1.022 1.76 —3.58-7.39
Base + ns(mt, 4 df) 0.360 2109.71 1.023 1.77 —3.58-7.42
Base + ns(mt(lag 1), 4 df) 0.395 2102.04 1.020 2.92 —2.16-8.28
Base + ns(RHMean, 2 df) 0.508 2127.33 1.034 3.47 —1.66—8.86
Base + ns(mt, 2 df) + ns(RHMean, 2 df) 0.391 2109.47 1.024 1.33 —4.04-7.01
Base + B=0*(mt < 22) + p*(mt — 22) 0.410 2117.56 1.029 2.31 —2.80-7.70
Base + B=0*(mt < 25) + p*(mt — 25) 0.385 2113.25 1.026 2.90 —2.17-8.24
Base + B=0*(RHMean < 88) + B*(RHMean — 88) 0.496 2128.86 1.034 3.94 —-1.17-9.31
Base + RHMean + B=0*(RHMean < 88) + 0.515 2129.07 1.034 3.49 —1.64-8.88
B*(RHMean — 88)
Base + B=0*(mt < 25) + p*(mt — 25) + 0.384 2117.29 1.026 2.94 —2.15-8.29
B=0*(RHMean < 88) + B*(RHMean — 88)
Chronic Coronary Artery Disease
Base 0.322 2078.21 1.036 6.83 2.45-11.40
Base + ns(mt, 2 df) 0.237 2061.62 1.025 4.04 —0.59-8.88
Base + ns(mt, 4 df) 0.255 2060.19 1.023 3.67 —0.95-8.50
Base + ns(RHMean, 2 df) 0.314 2081.17 1.036 7.15 2.71-11.79
Base + ns(mt, 2 df) + ns(RHMean, 2 df) 0.235 2065.21 1.026 4.31 —0.38-9.22
Base + B=0*(mt < 22) + p*(mt — 22) 0.260 2075.62 1.032 5.82 1.40-10.42
Base + B=0*(mt < 25) + p*(mt — 25) 0.295 2079.26 1.034 6.49 2.10-11.06
Base + B=0*(RHMean < 88) + B*(RHMean — 88) 0.320 2082.16 1.036 6.90 2.51-11.48
Base + RHMean + B=0*(RHMean < 88) + 0.314 2083.87 1.037 7.11 2.67-11.75
B*(RHMean — 88)
Base + B=0*(mt < 25) + p*(mt — 25) + 0.295 2083.22 1.035 6.55 2.15-11.14
B=0*(RHMean < 88) + B*(RHMean — 88)

Table continues next page

8 Base = COH + year + day of the week + ns(time, XX df).
b ns = natural spline, mt = mean temperature, RHMean = mean relative humidity.

¢ Mean percent change across the interquartile range of COH.
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Table 10 (Continued). Subgroups Defined Using Quebec Health Insurance Plan Data: Sensitivity Analysis for Coefficient
of Haze (COH) for Warm Season, Subjects Aged 65 Years or More, Using Different Models for Weather. Mean Percent
Change in Daily Nonaccidental Mortality Evaluated at Lag 0 Across the COH Interquartile Range, Montreal, 1984 to 1993

Pvalue for
Model®P Bartlett AIC Dispersion MPC® 95% CI
Congestive Heart Failure
Base 0.775 2153.78 1.064 8.11 3.21-13.25
Base + ns(mt, 2 df) 0.791 2135.34 1.056 5.06 —0.13-10.51
Base + ns(mt, 4 df) 0.798 2138.50 1.057 4.85 —0.34-10.31
Base + ns(RHMean, 2 df) 0.782 2156.99 1.065 8.27 3.30-13.48
Base + ns(mt, 2 df) + ns(RHMean, 2 df) 0.796 2139.18 1.057 5.20 —0.05-10.73
Base + B=0*(mt < 22) + B*(mt — 22) 0.760 2150.14 1.061 6.90 1.97-12.07
Base + B=0*(mt < 25) + B*(mt — 25) 0.761 2152.99 1.062 7.63 2.73-12.77
Base + p=0*(RHMean < 88) + B*(RHMean — 88) 0.774 2157.58 1.064 8.20 3.29-13.35
Base + RHMean + B=O*(RHMean < 88) + 0.773 2159.77 1.065 8.23 3.26-13.44
B*(RHMean — 88)
Base + B=0*(mt < 25) + B*(mt — 25) + 0.760 2156.82 1.062 7.72 2.80-12.88
B=0*(RHMean < 88) + f*(RHMean — 88)
Any Coronary Artery Disease
Base 0.465 2074.41 1.061 5.27 1.52-9.16
Base + ns(mt, 2 df) 0.415 2051.83 1.048 2.51 —1.45-6.63
Base + ns(mt, 4 df) 0.445 2052.47 1.048 2.29 —1.67-6.41
Base + ns(RHMean, 2 df) 0.456 2075.76 1.061 5.72 1.91-9.67
Base + ns(mt, 2 df) + ns(RHMean, 2 df) 0.395 2053.94 1.048 2.95 —-1.07-7.13
Base + B=0*(mt < 22) + B*(mt — 22) 0.430 2069.35 1.056 4.26 0.49-8.18
Base + B=0*(mt < 25) + B*(mt — 25) 0.446 2074.17 1.059 4.93 1.18-8.82
Base + B=0*(RHMean < 88) + B*(RHMean — 88) 0.468 2076.77 1.061 5.45 1.68-9.35
Base + RHMean + B=0*(RHMean < 88) + 0.455 2077.82 1.061 5.72 1.91-9.67
B*(RHMean — 88)
Base + f=0*(mt < 25) + B*(mt — 25) + 0.450 2076.58 1.059 5.11 1.34-9.01
B=0*(RHMean < 88) + B*(RHMean — 88)
Any Cardiovascular Disease
Base 0.418 2054.88 1.073 4.67 1.83-7.59
Base + ns(mt, 2 df) 0.356 2017.43 1.051 1.93 —1.07-5.02
Base + ns(mt, 4 df) 0.382 2015.47 1.050 1.67 —1.33-4.75
Base + ns(RHMean, 2 df) 0.416 2056.00 1.072 4.78 1.90-7.74
Base + ns(mt, 2 df) + ns(RHMean, 2 df) 0.340 2020.00 1.052 2.03 —1.00-5.15
Base + B=0*(mt < 22) + p*(mt — 22) 0.346 2035.77 1.062 3.55 0.69-6.48
Base + B=0*(mt < 25) + B*(mt — 25) 0.388 2048.46 1.067 4.25 1.41-7.17
Base + p=0*(RHMean < 88) + B*(RHMean — 88) 0.422 2056.06 1.072 4.83 1.98-7.76
Base + RHMean + B=0*(RHMean < 88) + 0.425 2058.17 1.072 4.77 1.89-7.73
B*(RHMean — 88)
Base + B=0*(mt < 25) + B*(mt — 25) + 0.368 2049.73 1.066 4.41 1.56-7.34

B=0*(RHMean < 88) + B*(RHMean — 88)

@ Base = COH + year + day of the week + ns(time, XX df).
b ns = natural spline, mt = mean temperature, RHMean = mean relative humidity.

¢ MPC = Mean percent change across the interquartile range of COH.
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DISCUSSION

REFERENCES*

This reanalysis showed clearly that the GAMs have not
performed adequately, in that they did not account cor-
rectly for strong correlations among nonlinear covariates.
The use of the tighter convergence criteria in this data set
and in others with similar levels of correlations will not
resolve these problems. Thus, the findings from this reanal-
ysis with regard to tighter convergence criteria for the
GAMs should not be trusted.

The main issue of this reanalysis relates to how one
should model weather. In the original analysis, we estab-
lished a goodness-of-fit criterion for selecting weather vari-
ables that, in this reanalysis, we applied routinely as our
primary analysis. Previously, we were not overly con-
cerned with the functional form for the weather terms, as
weather did not affect the finding appreciably. This lack of
concern now appears incorrect, as the parametric models
that we are using now are correctly handling the complex
correlations in our data.

With the mostly nonsignificant findings (except for con-
gestive heart failure), arising not from filtering the data but
from the apparent confounding by temperature, it is critically
important to ensure that these results are correct. It is thus
worthwhile to reconsider the methodology employed for
these adjustments. In particular, in multivariate modeling,
reliance on P values or other goodness-of-fit tests is not an
appropriate method for selecting risk factors as potential con-
founding variables. Rather, one should attempt to use prior
knowledge of risk factors to construct the most accurate sta-
tistical model possible. Temperature appears to be a risk
factor for daily mortality, especially in fragile populations,
but simply fitting a natural spline to the data may be incor-
rect if the effects only occur in higher temperature ranges.
The data from Montreal showed that most confounding
occurs in the midrange of temperature (~15-22°C). Models
that account for multiple unusually warm days might better
reflect actual physiological mechanisms. (In Montreal,
because of centralized heating in most homes and a lack of
air conditioning, the warm season is of greatest concern.) In
this reanalysis, there was insufficient time to develop such
models, but our sensitivity analyses using the quasithreshold
models showed that air pollution effects increased when the
temperature threshold was increased.

In conclusion, although our primary results were based
on fitting natural splines to weather variables, which was
the basis of our a priori modeling strategy, these results
should be considered final. The most credible findings may
lie somewhere between the results of our quasithreshold
models and the use of parametric smoothers.

130

1. Goldberg MS, Bailar JC III, Burnett RT, Brook JR,
Tamblyn R, Bonvalot Y, Ernst P, Flegel KM, Singh
RK, and Valois M-F. 2000. Identifying Subgroups of
the General Population That May Be Susceptible to
Short-Term Increases in Particulate Air Pollution: A
Time-Series Study in Montreal, Quebec. Research
Report 97. Health Effects Institute, Cambridge MA.

2. Goldberg MS, Burnett RT, Bailar JC III, Brook J,
Bonvalot Y, Tamblyn R, Singh R, and Valois M-F.
2001. The association between daily mortality and
ambient air particle pollution in Montreal, Quebec:
1. Nonaccidental mortality. Environ Res 86:12-25.

3. Goldberg MS, Burnett RT, Bailar JC III, Brook J,
Bonvalot Y, Tamblyn R, Singh R, Valois M-F, Vin-
cent R. 2001. The association between daily mor-
tality and ambient air particle pollution in Montreal,
Quebec: 2. Cause-specific mortality. Environ Res
86:26-36.

4. Goldberg MS, Burnett RT, Bailar JC III, Tamblyn R,
Ernst P, Flegel K, Brook J, Bonvalot Y, Singh R,
Valois M-F, Vincent R. 2001. Identification of per-
sons with cardiorespiratory conditions who are at
risk of dying from the acute effects of ambient air
particles. Environ Health Perspect 109(Suppl
4):487-494.

5. Goldberg MS, Burnett RT, Brook J, Bailar JC III,
Valois M-F, Vincent R. 2001. Associations between
daily cause-specific mortality and concentrations of
ground-level ozone in Montreal, Quebec. Am J Epi-
demiol 154:817-826.

6. Priestly, M. B. Spectral Analysis and Time Series.
Academic Press, London:1981

7. Dominici, F., McDermott, A., Zeger, S. L., and Samet,
J. M. On generalized additive models in time series
studies of air pollution and health. Am J Epidemiol
(156):1-11,2002

8. Ramsay, T. O., Burnett, R. T., and Krewski, D. The
effect of concurvity in generalized additive models
linking mortality to ambient particulate matter. Epi-
demiology (14):18-23,2003

* Bold type identifies publications containing the original analyses revised
in this short communication report.



MS Goldberg and RT Burnett

9. McCullagh, P. and Nelder, J. A. Generalized Linear
Models. (2nd ed). Chapman and Hall, London:1989

10. Zidek, J. V., Wong, H., Le, N. D., and Burnett, R. Cau-
sality, measurement error and multicollinearity in

epidemiology. Environmetrics (7):441-451,1996

11. Cakmak, S., Burnett, R. T., and Krewski, D. Methods
for detecting and estimating population threshold
concentrations for air pollution-related mortality
with exposure measurement error. Risk Anal

(19):487—496,1999

ABBREVIATIONS AND OTHER TERMS

AIC
COH
df
EPA

GAM
GLM
LOESS
MPC
ns
PM, 5

QHIP

Akaike information criterion
coefficient of haze
degrees of freedom

Environmental Protection Agency
(US)

generalized additive model
generalized linear model
locally weighted smoothers
mean percent change
natural spline

particulate matter less than 2.5 pm in
diameter
Quebec Health Insurance Plan

APPENDIX A.

Table A.1. Distribution of Mean Daily Environmental Pollutants Averaged over All Monitoring Stations,
Montreal, from 1984 to 19932

Monit- Days of Percentiles
oring Measure-
Stations ments Mini-
Units (n) (n) Mean SD mum 25th 50th 75th 100th IQRb
TSP pg/m3 19 603 53.1 22.6 146 37.0 487 65.6 211.1  28.57
PM,, ng/m3 2 624 32,2 17.6 6.5 19.7 285 411 1205  21.32
PM, 5 ng/m3 2 636 17.4 114 2.2 9.4 147 219 720 1251
Sulfate from PM;, ng/m’ 2 437 47 44 0.3 1.9 36 57 307 3.84
Sulfate from PM, 5 ng/m3 2 446 4.3 4.2 0.2 1.6 3.1 51 29.2 3.51
Sulfate from TSP pg/m3 13 607 4.3 2.9 0.3 2.3 3.6 53  19.2 3.02
Sutton Sulfate® ng/m3 1 2680 3.3 3.6 0 1.3 2.2 3.8 30.0 2.50
COH 0.1 COH 11 3653 2.4 1.5 0.1 1.3 2.1 3.2  15.6 1.85
units/327.8
linear m
Extinction 1 3454 015 010 0.01 006 015 017 1.87 0.11
S0, ng/m3 13 3653 17.8  11.2 3.9 10.3 14.6 21.8 1057 11.50
NO, ng/m? 8 3653 417  15.4 88 309 395 50.2 1435 19.34
NO pg/m3 8 3653 41.8  29.0 2.7 219 348 523 2814 3041
co ppm 12 3653 0.8 0.5 0.1 0.5 0.7 1.0 5.1 0.5
0, ng/m3 9 3653 29.0 17.1 28 16.6 26.0 37.9 163.9 21.34

2 TSP = total suspended particles; PM;, = particulate matter < 10 pm in diameter; COH = coefficient of haze; SO, = sulfur dioxide; NO, = nitrogen dioxide;

NO = nitrogen oxide; CO = carbon monoxide; O3 = ozone.

2IQR = interquartile range.

¢ From 1986 to 1993.
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Daily Mortality and Air Pollution in The Netherlands

Gerard Hoek

ABSTRACT

We recently reported an association between daily fluc-
tuations in ambient air pollution and daily mortality in the
Netherlands. To adjust for long-term time trends and sea-
sonal variation, we used generalized additive models
(GAMs*). The use of GAM has been questioned because of
inappropriate convergence criteria and underestimation of
standard errors. We performed a reanalysis of the data to
test whether the conclusions were sensitive to the conver-
gence criteria in S-Plus and replacement of the GAM
model by a natural spline (ns) function, which is assumed
to give correct standard errors.

Air pollution effect estimates were in general very sim-
ilar between the two GAMs (default and strict convergence
criteria) and natural spline models. Standard errors of the
natural spline model were between 10% and 25% higher.
The specification of stricter convergence criteria and the
use of natural splines instead of GAM did not change any
of the conclusions drawn in the two original papers.

INTRODUCTION

We recently published two papers showing an associa-
tion between daily fluctuations in ambient air pollution
and daily mortality in the Netherlands (Hoek et al 2000,
2001). To adjust for long-term time trends and seasonal
variation, we used GAM. The use of GAM has been ques-
tioned because of inappropriate convergence criteria and
underestimation of standard errors (Dominici et al 2002;
Ramsay et al 2003). In the National Morbidity, Mortality,
and Air Pollution Study (NMMAPS); the estimated air pol-
lution effect decreased with more appropriate convergence

* A list of abbreviations and other terms appears at the end of the section.

This short communication report is part of an HEI Special Report, which
also includes 20 other reports, a section on NMMAPS I, two HEI Commen-
taries, and an HEI Statement. Please address correspondence about this sec-
tion to Dr Gerard Hoek, Environmental and Occupational Health Unit,
Institute for Risk Assessment Sciences, Utrecht University, PO Box 80.176,
3508 TD Utrecht, The Netherlands; g.hoek@iras.uu.nl.

Health Effects Institute © 2003

criteria and using a parametric model to adjust for non-
linear relations (Dominici et al 2002).

Key findings of the reported studies were that both par-
ticulate matter and gaseous air pollutants were associated
with daily mortality. The effect of ozone was independent
of that of other air pollutants. Indicators for fine particles
were more strongly associated with mortality than particu-
late matter of 10 pm mass median aerodynamic diameter
(PM, ). Higher effect estimates were found for the summer
season than for the winter season for all pollutants (Hoek
et al 2000). Larger relative risks (RRs) were found for spe-
cific cardiovascular causes of death such as arrhythmia,
heart failure and thrombosis (Hoek et al 2001) than for all
cardiovascular causes of death combined.

We performed a reanalysis of these data to test whether
the conclusions were sensitive to use of the default conver-
gence criteria in S-Plus and replacement of GAM by a para-
metric model (natural spline).

METHODS

The data and the confounder model development has
been described in detail (Hoek et al 2000). Briefly, we
studied daily (cause-specific) mortality from 1986 to 1994
for regions of the Netherlands and the entire Netherlands
combined. This paper focuses on entire Netherlands anal-
yses only. Daily air pollution data were available for gas-
eous air pollutants (ozone [O4], sulfur dioxide [SO,],
nitrogen dioxide [NO,], carbon monoxide [CO]) and black
smoke (BS) for the entire study period. Daily data for PM,,
and fine particle components sulfate (S0,%7) and nitrate
(NO3 ™) were available from 1992 to 1994. Daily data on
temperature and relative humidity were available for the
entire study period.

To adjust for nonlinear relation with confounders, gener-
alized additive models were used. The original confounder
model was developed based upon a priori selected plau-
sible spans for the locally weighted smoothers (LOESS)
function (eg, 0.01 to 0.10 for date). We used the Akaike
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information criterion (AIC) to select the span but checked
plots of the partial autocorrelation of the residuals and
plots of predicted values versus predictor for potential
overadjustment. The final confounder model consisted of:

e LOESS function of date with a span of 0.02 for total
mortality and 0.03 for respiratory and cardiovascular
mortality (94 and 60 degrees of freedom for nine years,
thus a fairly tight control for season was selected); for
components with fewer data, the span was adjusted
accordingly (eg, 0.06 for PM;( and total mortality);

e three linear influenza variables (average lag 0-6 days,
lag 7-13 days, and lag 14—20 days);

* two bilinear temperature (T) variables: WARM = 0
below 14°C and T — 14 above 14°C and COLD =0
above 14°C and 14 — T below 14°C; WARM of the
same day and COLD lagged three days were included
as these lags showed the strongest association with
mortality;

e B-spline of relative humidity with one knot at 80%
(bilinear function); and

e indicator variables for day of the week and holidays.

All original calculations were performed using GAM
implemented in S-Plus 4.0 for Windows. The default con-
vergence criterion (0.001) and number of iterations (10)
were used. Results from this procedure is referred to as
GAM default. For the sensitivity analysis, the convergence
criterion for the backfitting and the local scoring proce-
dures was set to 0.00000001 and the number of iterations
to 1000 for both procedures. Results from this procedure
are referred to as GAM strict. As an additional sensitivity
analysis, we replaced the LOESS function of date by a nat-
ural spline of date with the same degree of freedom as the
LOESS function. Strict convergence criteria were used.
The degree of freedom from the LOESS model was deter-
mined by the summary function in S-Plus. Results from
this procedure are termed Spline. All sensitivity analyses
were conducted with S-Plus 2000 for Windows.

RESULTS

Using default criteria, the procedure stopped after 7 to
10 iterations. Differences of the deviance of 1 to 3 units
were quite typical, suggesting too early termination. Using
more strict criteria, the procedure stopped after 15 to
30 iterations. Typically, the deviance after the first loop
was already within 0.5 units from the deviance after the
final loop, a result from the large number of iterations in
the inner loop. The natural spline model converged in
three to four loops. We noticed that with missing values,
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S-Plus did not use all the degrees of freedom supplied to
the ns(date) function, probably because knots were placed
at missing values. This was a problem for the PM, anal-
yses where we had complete daily data for the last three
years of the nine-year study period. The problem was
solved by using a separate dataset of the last three years.

The deviance of GAMs with stricter convergence criteria
was substantially lower than the deviance from models
using default criteria (Table 1). Deviance of the natural
spline model was higher than that of GAM, in agreement
with the more flexible nature of the LOESS function. Plots
of the LOESS and natural spline function of date showed
similar patterns (Figure 1), with slightly larger amplitude
for the spline function. The plot documents that with a

Table 1. Deviances of Different Models for Total Mortality,
The Netherlands 1986-1994

Natural

Lag GAM default GAM strict Spline

1159.3
3505.8
3494.3

1153.8
3483.3
3476.1

1171.5
3506.2
3506.8

PM, 0-6
NO, 0-6

8 Daily data from 1992-1994 only.

=0.03)
o =]
& 3

o
7

lo(Date, Span
o
&

=60)

0.04

‘ns(Date, df
S o
s &

—0.154

0 1000 2000 3000
Date

Figure 1. Predicted seasonal variation of cardiovascular mortality by
LOESS (lo) and natural spline (ns) models (df = degree of freedom).



G Hoek

fairly strict control for seasonality was selected. Coeffi-
cients from temperature and influenza did not differ sub-
stantially between the LOESS and spline model.

Effect estimates for all-cause mortality were very similar
in the three different models (Table 2). For most pollutants,
effect estimates were slightly lower in the natural spline
model compared to GAMs. For ozone, effect estimates were
higher in the spline model and GAM strict, especially for the
weekly average. Consistently across models, standard errors
of GAMs (both default and strict) were 10% to 25% lower
than those of the corresponding natural spline model. For
two cases with some decrease in effect estimate in the spline
model (weekly average of SO, and NO,), we checked
whether increasing the degree of freedom for the spline
model (such that approximately the same deviance as that of
the LOESS model was achieved) affected the results. Regres-
sion slopes (SE) for NO, were 0.000877 (0.000130) for GAM
strict, 0.000648 (0.000172) for the spline model with the
same degree of freedom, and 0.000737 (0.000178) for the
spline model with approximately the same deviance. Corre-
sponding numbers for SO, were 0.000820 (0.000130),
0.000614 (0.000156), and 0.000644 (0.000157). Thus, only a
small fraction of the difference between the GAM and the
spline model was due to the tighter fit of GAM.

Effect estimates for cardiovascular, chronic obstructive
pulmonary disease, and pneumonia mortality were similar
in the three different models (Table 3). Differences between
models were even smaller than for all-cause mortality, pos-
sibly related to the larger span selected for cause-specific
analyses. As in the original paper, the largest effect esti-
mates were found for pneumonia deaths. Effect estimates for
specific cardiovascular causes of death were similar across
the three models (Table 4). As in the original analyses, RR
estimates were substantially higher for heart failure,
arrhythmia and thrombosis compared to all cardiovascular
disease combined. Note that the RR estimates for cardiovas-
cular disease combined in the original paper (Hoek et al
2001) are slightly different from the ones presented here
and reported in (Hoek et al 2000). The original RRs for car-
diovascular disease combined are from a report to the Min-
istry (Hoek et al 1997). For this report, adjustment for
influenza was performed differently: only influenza of the
current day was taken into account, which turned out to be
insufficient. Little change occurred in the effect estimates
from two pollutant models (Table 5). No conclusion about
independent effects was altered by model choice.

Finally I checked whether the small changes that were
found were due to the use of only one LOESS function in the

Table 2. Sensitivity of Total Mortality Associations with Air Pollution to Confounder Model Specification

GAM Default GAM Strict Natural Spline

Pollutant RR 95% CI RR 95% CI RR 95% CI N

PM10 lagl 1.018 1.003,1.034 1.019 1.003,1.034 1.018 1.002,1.035 1092
PM10 avg 1.023 1.004,1.041 1.023 1.005,1.041 1.019 0.998,1.040 1081
03 L’:lgl 1.034 1.020,1.049 1.040 1.025,1.054 1.043 1.024,1.062 3196
03 avg 1.017 1.002,1.032 1.042 1.026,1.057 1.059 1.031,1.087 3191
BS lagl 1.020 1.010,1.030 1.019 1.010,1.029 1.019 1.009,1.030 3267
BS avg 1.028 1.017,1.038 1.026 1.015,1.036 1.022 1.009,1.035 3267
SOZ lagl 1.027 1.017,1.037 1.026 1.016,1.036 1.023 1.012,1.034 3196
SOZ avg 1.037 1.026,1.048 1.033 1.022,1.045 1.025 1.012,1.038 3191
NOZ L’:lgl 1.029 1.020,1.038 1.028 1.019,1.037 1.025 1.015,1.035 3184
NOZ avg 1.031 1.023,1.040 1.027 1.018,1.035 1.020 1.009,1.031 3177
CcO lagl 1.035 1.018,1.052 1.033 1.016,1.050 1.031 1.012,1.050 2158
CO avg 1.046 1.025,1.068 1.041 1.020,1.062 1.042 1.017,1.068 2153
8042_ lagl 1.032 1.006,1.059 1.033 1.007,1.062 1.030 1.002,1.060 876
8042_ avg 1.019 0.995,1.043 1.022 0.998,1.046 1.016 0.989,1.045 871
NO3_ lagl 1.041 1.014,1.069 1.042 1.015,1.070 1.041 1.011,1.072 876
N037 avg 1.029 1.005,1.053 1.030 1.006,1.054 1.024 0.996,1.053 871
Sec lagl 1.043 1.014,1.073 1.044 1.015,1.074 1.042 1.010,1.075 876
Sec avg 1.026 1.001,1.052 1.028 1.003,1.054 1.022 0.993,1.052 871

Note: The ranges for RR calculation were (weekly average in micrograms per cubic meter in parentheses) 100 (80) for PM,; 50 (40) for BS and SO,; 50 (30)
for NO,; 150 (120) for O4; 1500 (1200) for CO; 25 (15) for sulfate and nitrate; 50 (30) for the sum of sulfate and nitrate. Sec = sum of sulfate and nitrate as an

approximation of secondary aerosol; Avg = average of lag 0-6 days.
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Table 3. Sensitivity of Cause-Specific Mortality Analysis with Air Pollution to Confounder Model Specification

GAM Default GAM Strict Natural Spline
Pollutant?® RR 95% CI RR 95% CI RR 95% CI N
cvpP
PMlO 1.015 0.987,1.043 1.015 0.988,1.044 1.025 0.995,1.057 1081
03 1.048 1.026,1.071 1.053 1.030,1.076 1.062 1.033,1.092 3196
BS 1.032 1.016,1.048 1.031 1.015,1.047 1.029 1.010,1.048 3267
SOZ 1.039 1.022,1.056 1.037 1.020,1.054 1.038 1.018,1.057 3191
NOZ 1.028 1.015,1.041 1.025 1.012,1.038 1.021 1.005,1.036 3177
CcO 1.044 1.012,1.077 1.041 1.009,1.074 1.046 1.010,1.083 2153
8042_ 1.021 0.981,1.063 1.022 0.982,1.064 1.027 0.984,1.072 876
N037 1.024 0.983,1.066 1.025 0.984,1.068 1.035 0.990,1.083 876
Sec® 1.026 0.982,1.072 1.028 0.984,1.073 1.036 0.988,1.086 876
copp?
PMlO 1.096 1.014,1.185 1.099 1.017,1.188 1.097 1.007,1.195 1081
03 0.994 0.932,1.059 1.009 0.947,1.075 1.023 0.940,1.113 3196
BS 1.072 1.026,1.120 1.070 1.024,1.117 1.072 1.018,1.129 3267
SOZ 1.056 1.007,1.107 1.049 1.001,1.100 1.051 0.996,1.109 3191
NOZ 1.090 1.052,1.129 1.077 1.040,1.116 1.081 1.036,1.129 3177
CcO 1.194 1.099,1.298 1.184 1.090,1.287 1.190 1.085,1.305 2153
8042_ 1.115 0.996,1.248 1.119 1.000,1.252 1.118 0.992,1.261 876
NO3_ 1.077 0.958,1.211 1.081 0.961,1.215 1.098 0.966,1.247 876
Sec 1.115 0.984,1.262 1.119 0.989,1.268 1.129 0.987,1.291 876
Pneumonia
PMlO 1.167 1.058,1.287 1.169 1.060,1.289 1.176 1.057,1.309 1081
03 1.130 1.049,1.217 1.147 1.065,1.235 1.150 1.048,1.263 3196
BS 1.126 1.064,1.192 1.122 1.060,1.188 1.137 1.063,1.215 3267
SOZ 1.102 1.034,1.174 1.092 1.025,1.164 1.093 1.016,1.175 3191
NOZ 1.146 1.094,1.201 1.134 1.082,1.188 1.153 1.089,1.221 3177
CcO 1.276 1.143,1.426 1.266 1.133,1.414 1.257 1.112,1.423 2153
80427 1.098 0.954,1.264 1.106 0.961,1.273 1.104 0.948,1.284 876
NO; ™~ 1.202 1.040,1.389 1.208 1.045,1.396 1.251 1.068,1.466 876
Sec 1.175 1.006,1.372 1.184 1.014,1.382 1.204 1.018,1.424 876

@ Averages of lag 0-6 days, except ozone, sulfate, nitrate and sec (lag 1).
b CVD = Cardiovascular disease.
€ Sec = sum of SO,2~ and NO, ™ as an approximation of secondary aerosol.

d COPD = Chronic obstructive pulmonary disease.

model (Dominici et al 2002). Thus an additional LOESS term
for influenza was added to the model. This did not alter
effect estimates nor the sensitivity to different models for
date (data not shown). Next, we replaced the bilinear
temperature variables with two LOESS functions with a span
of 0.7 (3 degrees of freedom) for the warm and cold
continuous temperature variables. Specification of LOESS
functions for temperature changed the effect estimates of the
original model marginally (Table 6). Effect estimates
increased slightly. When the LOESS functions were replaced
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with natural splines, somewhat larger changes of the air
pollution effect estimates occurred: increases for ozone and
decreases for the other pollutants. Changes were larger for
the weekly average than for the previous day concentration.
Most effect estimates remained significant however.

Season-specific analyses with the two LOESS functions
for temperature in the model did not show any systematic
difference between LOESS models and spline models (for
date and temperature) (Table 7).
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Table 4. Sensitivity of Specific Cardiovascular Mortality Associations with Air Pollution to Confounder
Model Specification

GAM Default GAM Strict Natural Spline
Pollutant®  RR 95% CI RR 95% CI RR 95% CI N
cvDpP PM;q 1.015 0.987,1.043 1.015 0.988,1.044 1.025 0.995,1.057 1081
O3 1.048 1.026,1.071 1.053 1.030,1.076 1.062 1.033,1.092 3196
BS 1.032 1.016,1.048 1.031 1.015,1.047 1.029 1.010,1.048 3267
SO, 1.039 1.022,1.056 1.037 1.020,1.054 1.038 1.018,1.057 3191
NO, 1.028 1.015,1.041 1.025 1.012,1.038 1.021 1.005,1.036 3177
CO 1.044 1.012,1.077 1.041 1.009,1.074 1.046 1.010,1.083 2153
MI¢ PM;q 1.005 0.964,1.048 1.006 0.965,1.049 1.016 0.970,1.063 1081
(O 1.026 0.994,1.060 1.034 1.001,1.067 1.043 1.001,1.086 3196
BS 1.017 0.994,1.041 1.015 0.992,1.039 1.009 0.982,1.037 3267
SO, 1.015 0.991,1.039 1.011 0.987,1.035 1.011 0.984,1.039 3191
NO, 1.017 0.998,1.035 1.011 0.992,1.030 1.002 0.980,1.025 3177
CO 1.050 1.004,1.099 1.045 0.999,1.094 1.043 0.991,1.097 2153
RYTMA PM;, 1.041 0.932,1.163 1.044 0.934,1.166 1.041 0.922,1.175 1081
04 1.074 0.977,1.181 1.092 0.993,1.200 1.114 0.988,1.255 3196
BS 1.071 1.001,1.146 1.068 0.998,1.143 1.058 0.977,1.145 3267
SO, 1.046 0.971,1.128 1.040 0.964,1.122 1.032 0.947,1.126 3191
NO, 1.030 0.976,1.088 1.020 0.966,1.076 1.013 0.948,1.082 3177
CO 1.062 0.937,1.203 1.053 0.929,1.194 1.031 0.898,1.184 2153
FAIL® PM;q 1.036 0.960,1.118 1.039 0.963,1.121 1.047 0.963,1.139 1081
(O] 1.079 1.009,1.154 1.090 1.019,1.165 1.102 1.012,1.199 3196
BS 1.081 1.031,1.134 1.079 1.029,1.132 1.083 1.024,1.146 3267
SO, 1.098 1.043,1.156 1.093 1.038,1.151 1.100 1.037,1.167 3191
NO, 1.064 1.024,1.106 1.059 1.019,1.101 1.059 1.011,1.110 3177
CcO 1.109 1.012,1.216 1.102 1.005,1.208 1.138 1.027,1.260 2153
CERE! PM, 1.031 0.971,1.094 1.032 0.973,1.096 1.038 0.973,1.108 1081
(O 1.071 1.023,1.122 1.082 1.033,1.133 1.091 1.029,1.157 3196
BS 1.041 1.007,1.077 1.040 1.006,1.075 1.036 0.996,1.077 3267
SO, 1.066 1.029,1.104 1.062 1.026,1.100 1.062 1.020,1.106 3191
NO, 1.047 1.020,1.076 1.041 1.014,1.069 1.040 1.006,1.074 3177
CO 1.048 0.982,1.118 1.043 0.977,1.113 1.062 0.989,1.142 2153
TROMS PM;q 1.010 0.894,1.143 1.011 0.894,1.144 1.015 0.887,1.161 1081
(O 1.140 1.032,1.259 1.155 1.046,1.276 1.166 1.028,1.322 3196
BS 1.044 0.972,1.122 1.043 0.971,1.121 1.038 0.954,1.130 3267
SO, 1.126 1.044,1.213 1.125 1.044,1.213 1.137 1.043,1.239 3191
NO, 1.002 0.946,1.062 0.997 0.941,1.056 0.991 0.924,1.064 3177
CO 1.065 0.926,1.224 1.058 0.920,1.217 1.089 0.933,1.271 2153

@ Average of lag 0-6 days, except ozone (lag 1).

b CVD = all cardiovascular disease combined.

¢ MI = myocardial infarction.
d RYTM = arrhythmia.
¢ FAIL = heart failure.

f CERE = cerebrovascular disease.

8 TROM = thrombosis related diseases.
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Table 5. Sensitivity of Two Pollutant Models for Total Mortality

GAM Default GAM Strict Spline
Model Pollutant? RR 95% CI RR 95% CI RR 95% CI N
PM;9+03 PM;o 1.025 1.007,1.043 1.026 1.007,1.044 1.021 1.001,1.042 1081
04 1.045 1.018,1.074 1.050 1.022,1.079 1.048 1.014,1.083 1081
PM, ,+S0, PM,, 0.983  0.960,1.006 0.987  0.964,1.011 0.986  0.959,1.014 1081
SO, 1.137 1.077,1.201 1.123 1.063,1.186 1.115 1.045,1.189 1081
PM;9+NO, PM; 0.981 0.957,1.006 0.988 0.964,1.013 0.989 0.958,1.020 1081
NO, 1.052 1.028,1.076 1.044 1.020,1.068 1.037 1.007,1.067 1081
PM;o+CO PM; 1.038 1.005,1.072 1.044 1.011,1.079 1.056 1.015,1.099 1081
CO 0.969 0.914,1.028 0.959 0.904,1.016 0.927 0.864,0.996 1081
BS+0, BS 1.037 1.026,1.048 1.034 1.023,1.045 1.029 1.016,1.043 3196
(O 1.041 1.026,1.056 1.046 1.031,1.061 1.048 1.029,1.067 3196
BS+S0, BS 1.013 0.999,1.028 1.012 0.998,1.026 1.014 0.995,1.034 3191
SO, 1.027 1.013,1.042 1.025 1.010,1.040 1.015 0.996,1.034 3191
BS+NO, BS 1.009 0.993,1.025 1.012 0.996,1.028 1.016 0.995,1.037 3177
NO, 1.026 1.014,1.038 1.019 1.007,1.032 1.010 0.993,1.027 3177
BS+CO BS 1.048 1.015,1.081 1.050 1.018,1.084 1.062 1.021,1.104 2153
CcO 0.980 0.933,1.030 0.972 0.925,1.021 0.958 0.902,1.017 2153
PM;o+BS PM; 1.009 0.974,1.046 1.015 0.980,1.052 1.028 0.977,1.082 1081
BS 1.017 0.977,1.059 1.010 0.970,1.052 0.988 0.928,1.051 1081
SO4Z_+PM10 3042_ 1.029 0.997,1.062 1.029 0.997,1.062 1.028 0.994,1.064 876
PM; 1.005 0.981,1.031 1.007 0.983,1.033 1.003 0.974,1.033 876
SO4zi+BS 80427 1.027 0.997,1.058 1.028 0.998,1.059 1.029 0.996,1.063 876
BS 1.012 0.985,1.041 1.012 0.985,1.041 1.004 0.969,1.039 876
SO4zi+O3 80427 1.037 1.010,1.064 1.038 1.012,1.065 1.036 1.008,1.066 876
(O 1.070 1.038,1.104 1.075 1.043,1.108 1.076 1.035,1.118 876
SO4Z_+SOZ 3042_ 1.017 0.990,1.045 1.019 0.992,1.047 1.015 0.986,1.046 876
SO, 1.100 1.047,1.156 1.093 1.040,1.148 1.097 1.037,1.161 876
SO4zi+N02 80427 1.019 0.991,1.048 1.022 0.994,1.051 1.019 0.989,1.051 876
NO, 1.027 1.008,1.047 1.023 1.004,1.043 1.020 0.997,1.044 876
SO4Z_+CO 8042_ 1.035 1.005,1.066 1.037 1.007,1.068 1.040 1.007,1.073 876
CcO 0.990 0.951,1.030 0.988 0.949,1.028 0.971 0.927,1.017 876
NO; +PM,4 NO;~ 1.040 1.007,1.074 1.040 1.007,1.074 1.042 1.007,1.078 876
PM;q 1.002 0.977,1.027 1.004 0.979,1.029 0.998 0.970,1.027 876
NO; +BS NO;~ 1.037 1.007,1.069 1.038 1.008,1.070 1.041 1.008,1.076 876
BS 1.008 0.981,1.037 1.009 0.981,1.037 0.999 0.964,1.034 876
NO; +0;4 NO;~ 1.048 1.021,1.076 1.049 1.022,1.077 1.050 1.019,1.081 876
(O 1.074 1.041,1.107 1.078 1.046,1.111 1.080 1.039,1.123 876
NO3; +S0, NO;~ 1.025 0.997,1.055 1.027 0.999,1.057 1.024 0.993,1.057 876
SO, 1.095 1.042,1.151 1.087 1.035,1.143 1.090 1.029,1.155 876
NO; +NO, NO;~ 1.026 0.995,1.058 1.029 0.999,1.061 1.030 0.996,1.065 876
NO, 1.023 1.003,1.045 1.019 0.999,1.040 1.016 0.991,1.041 876
NO; +CO NO; ™ 1.046 1.015,1.078 1.048 1.017,1.079 1.053 1.019,1.088 876
CO 0.984 0.944,1.025 0.982 0.943,1.023 0.964 0.921,1.009 876

@ Average of lag 0-6 days, except for ozone, nitrate, and sulfate (lag 1).
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Table 6. Sensitivity of Total Mortality Analyses for Substituting Original Bilinear Temperature Terms by LOESS
Functions of Temperature

GAM Default GAM Strict Natural Spline

Pollutant RR 95% CI RR 95% CI RR 95% CI N

PM, lag1 1.020 1.005,1.036 1.020 1.004,1.035 1.015 0.998,1.033 1092
PM,, avg 1.028 1.010,1.047 1.027 1.008,1.045 1.012 0.989,1.036 1081
05 lag1 1.033 1.019,1.048 1.039 1.024,1.053 1.043 1.024,1.062 3196
Oj avg 1.018 1.003,1.033 1.042 1.027,1.057 1.060 1.032,1.089 3191
BS lag1 1.022 1.013,1.032 1.021 1.011,1.030 1.019 1.008,1.030 3267
BS avg 1.034 1.023,1.044 1.029 1.019,1.040 1.022 1.008,1.036 3267
SO, lag1 1.029 1.019,1.039 1.027 1.017,1.037 1.023 1.012,1.035 3196
SO, avg 1.044 1.032,1.055 1.038 1.027,1.049 1.028 1.013,1.043 3191
NO, lag1 1.031 1.022,1.040 1.029 1.020,1.038 1.025 1.015,1.035 3184
NO, avg 1.035 1.027,1.044 1.030 1.021,1.038 1.020 1.009,1.032 3177
CO lag1 1.038 1.021,1.055 1.035 1.018,1.052 1.028 1.008,1.047 2158
CO avg 1.055 1.034,1.077 1.047 1.026,1.068 1.039 1.012,1.067 2153
8042_ lag1 1.033 1.007,1.061 1.033 1.007,1.060 1.026 0.997,1.056 876
8042_ avg 1.021 0.997,1.045 1.021 0.998,1.046 1.008 0.978,1.038 871
NO; ™ lag1 1.044 1.017,1.072 1.044 1.017,1.072 1.037 1.007,1.069 876
NO;  avg 1.033 1.009,1.057 1.031 1.008,1.056 1.017 0.987,1.047 871
Sec? lag1 1.046 1.016,1.076 1.045 1.016,1.075 1.038 1.005,1.071 876
Sec? avg 1.030 1.005,1.056 1.029 1.004,1.055 1.014 0.982,1.046 871

a Sec = sum of SO,2~ and NO, ™ as an approximation of secondary aerosol.

Table 7. Sensitivity of Season Specific Analysis to Different Models

GAM Default GAM Strict Natural Spline
Pollutant?® Season RR 95% CI RR 95% CI RR 95% CI N
PMig winter 1.022 1.000,1.045 1.023 1.001,1.046 1.028 1.001,1.057 439
summer 1.090 1.034,1.148 1.088 1.033,1.147 1.072 0.998,1.151 459
(O winter 0.988 0.960,1.015 0.987 0.960,1.015 1.008 0.970,1.046 1271
summer 1.074 1.053,1.097 1.073 1.052,1.095 1.071 1.047,1.096 1377
BS winter 1.025 1.013,1.037 1.024 1.012,1.037 1.023 1.007,1.039 1341
summer 1.111 1.067,1.157 1.108 1.064,1.154 1.141 1.065,1.222 1377
SO, winter 1.033 1.020,1.046 1.031 1.018,1.044 1.035 1.020,1.049 1271
summer 1.068 1.021,1.118 1.057 1.011,1.106 1.058 0.995,1.124 1377
NO, winter 1.025 1.014,1.036 1.024 1.013,1.035 1.021 1.006,1.035 1271
summer 1.042 1.023,1.061 1.039 1.020,1.058 1.049 1.021,1.077 1377
CO winter 1.038 1.013,1.063 1.037 1.013,1.062 1.043 1.013,1.074 869
summer 1.199 1.108,1.296 1.188 1.099,1.284 1.231 1.105,1.371 918

& Average of lag 0-6 days, except for ozone (lag 1).
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Figure 2. Temporal pattern of air pollution, mortality, and weather.
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DISCUSSION
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ABBREVIATIONS AND OTHER TERMS

BS black smoke
CI confidence interval
CO carbon monoxide
CVD cardiovascular disease
GAM generalized additive model
LOESS locally weighted smoothers
NO, nitrogen dioxide
NO;~ nitrate
ns natural spline
(O ozone
PM, particulate matter of 10 pm mass
median aerodynamic diameter
RR relative risk
SO, sulfur dioxide
S0,%~ sulfate

* Bold type identifies publications containing the original analyses
revised in this short communication report.
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Associations of Particulate Matter Components with Dally
Mortality and Morbidity in Detroit, Michigan

Kazuhiko Ito

ABSTRACT

To examine the influence of the generalized additive
model (GAM*) convergence problem on the results of the
original Detroit data analysis, the associations between
particulate matter (PM) components and daily mor-
tality/morbidity were reexamined using stringent conver-
gence criteria as well as generalized linear models (GLMs)
that approximated the original GAMs. Generally, both the
GAMs with stringent convergence criteria and GLMs
resulted in smaller estimated relative risks (RRs) than
those reported in the original study. The reductions in the
estimated RRs did not differ across the PM indices. Thus,
the conclusions of the original study regarding the lack of
relative role of PM by size and chemical characteristics
remain the same. Sensitivity analyses using various
weather models and degrees of freedom (df) of time trend
smoothing indicate that the extent of difference in RR esti-
mates across different model specifications can be larger
than that caused by the GAM convergence problem.

INTRODUCTION

Lippmann and colleagues (2000) examined associations
between PM components and daily mortality and elderly
hospital admission data in Detroit, Michigan. The key fea-
ture of the study was that multiple PM components were
available from a monitor in Windsor, Ontario, that was
only a few miles from downtown Detroit. These PM
indices included total suspended particles (TSP), PM less
than 10 pm in diameter (PM;(), and sulfate from TSP fil-
ters for the 1985-1990 study period (mortality analysis

* A list of abbreviations and other terms appears at the end of the section.

This short communication report is part of an HEI Special Report, which
also includes 20 other reports, a section on NMMAPS I, two HEI Commen-
taries, and an HEI Statement. Please address correspondence about this sec-
tion to Dr Kazuhiko Ito, Nelson Institute of Environmental Medicine, New
York University School of Medicine, 57 Old Forge Road, Tuxedo NY 10987.

Health Effects Institute © 2003

only) and PM,,, PM, 5 (PM < 2.5 pm in diameter),
PM,_5 5 (PM;, minus PM, 5), sulfate (S0,27), and H* for
the 1992-1994 study period (for which both mortality and
elderly hospital admissions were analyzed). Gaseous pol-
lutants (sulfur dioxide [SO,], nitrogen dioxide [NO,],
ozone [O3], and carbon monoxide [CO]) were also avail-
able for these study periods.

The study addressed a specific hypothesis regarding the
relative importance of PM components: that the closest
associations are attributable to PM, more specifically to
PM,, and/or PM, 5 and especially the SO,2~ and H* com-
ponents of PM, 5. Two major findings from the original
study were as follows:

1. Our results were generally inconsistent with our
study hypothesis, particularly regarding the influence
of aerosol H* components of PM, s, that the relative
particle metric effect size and strength of associations
with mortality and morbidity outcomes would be as
follows: H* > SO,2~ > PM, 5 > PM,; > TSP.

2. Generally, the PM mass indices were more signifi-
cantly associated with health outcomes than were H*
or SO,2~. When both H" and SO,%~ were significantly
associated, SO,2~ was associated even more strongly
with the outcomes. These results suggest that PM com-
ponents other than H*, including the coarse compo-
nent of PM; (ie, PM;y—_5 5), may be harmful.

Recently, Dominici and coworkers (2002) reported that
using the GAM with default convergence criteria in S-Plus
statistical software could lead to biased results when the
coefficients are small and smoothing terms are included.
To examine the influence of this convergence problem on
the results of the original study, the associations between
PM components and daily mortality and morbidity were
reexamined using stringent convergence criteria as well as
GLMs that approximated the original GAMs. Addition-
ally, several sensitivity analyses using alternative model
specifications were conducted.
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METHODS

This revised analysis consisted of (1) revised analysis of
the original data using the exact final GAM Poisson model
specifications run in the original study but using more
stringent convergence criteria; (2) analysis of the original
data using a GLM Poisson model approximating the orig-
inal GAM Poisson model; and (3) sensitivity analyses
using alternative model specifications. The original
model development is first briefly summarized, and then
the model specification for reanalyses and additional
analyses are described.

The original study (Lippmann et al 2000) involved
sequential development of health-effects models in stages.
First, adjustments for confounding time trends were con-
sidered by evaluating the fitted health outcome series,
residual dispersion, and autocorrelation in Poisson GAM
with smoothing splines (as implemented in S-Plus as s( ))
with several candidate degrees of freedom. Noting that the
apparent influenza epidemics were captured and the
residual overdispersion and autocorrelation were mini-
mized (but not underdispersed or negatively autocorre-
lated), the degree of freedom that was equivalent to
changing directions in a period of approximately one
month (ie, 12 df per year) was chosen for all the outcomes
for both the 1985-1990 and 1992-1994 study periods. The
sole exception was respiratory mortality for the 1985-1990
study period, for which a three-month period (ie, 4 df per
year) was chosen to avoid underdispersion and negative
autocorrelation caused by a greater degree of freedom.
Second, using the degree of freedom chosen above, several
alternative weather model specifications were evaluated
for their consistency with biological plausibility and
model fit (ie, Akaike information criterion [AIC]). The final
weather model chosen contained a locally weighted
smoother (LOESS) of same-day temperature (to model
warm temperature effect) with a span of 0.5, a LOESS of the
average of temperatures lagged 1 through 3 days (to model
cold temperature effects) with a span of 0.5, and a hot-and-
humid indicator variable (mean temperature above 80°F
and relative humidity above 70%; to model hot and humid
interaction), in addition to the seasonal smoothing term
described above and day-of-week indicator variables. Third,
the lagged (0-day lag through 3-day lag and multiday
average thereof) pollution variables were added to the
Poisson model with the health outcome variables fitted to
season and weather. That is, the logarithm of the fitted
values from Poisson GAMs with the temporal trends and
weather models were included in the second Poisson model
with lagged pollution variables. This inclusion implies that
the second-stage Poisson model that estimated pollution
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coefficients was a GLM, not a GAM, since no smoothing was
done. Since the Poisson model to estimate the time trends
and weather effects was modeled using the GAM Poisson
model with lax default convergence criteria, however, the
fitted time trend/weather models still fit incompletely,
which affected the corresponding pollution effect estimates.

The selection of the weather model described above in
part considered AIC, although, as mentioned in the orig-
inal report, AIC was not as important as consistency with
biological plausibility. Since using the lax default conver-
gence criteria can lead to an underachievement of possible
fit, the deviance is generally larger for the GAM Poisson
model with default convergence criteria than for the model
with more stringent convergence criteria. Furthermore, the
extent to which the deviance is reduced for the GAM with
more stringent convergence criteria can vary across the
alternative weather models. Therefore, GAM Poisson
models with more stringent convergence criteria could
have resulted in different rankings of AIC values across the
alternative weather models evaluated in the original anal-
ysis. However, the reanalysis was conducted using exactly
the same GAM specifications as were used in the original
study because a comparison of the results using different
weather model specifications would obscure an examina-
tion of the effects of the convergence criteria problem. The
effects of using alternative model specifications were
examined as part of the sensitivity analysis.

A revised analysis of GAM Poisson models was con-
ducted using more stringent convergence criteria as sug-
gested by Dominici and coworkers (2002): the convergence
precision (epsilon) was set to 10~ 1* and maximum itera-
tion was set to 1000 for both the local scoring and backfit-
ting algorithms.

The GLM specification approximated the original
GAMs. Natural splines (ns( ) as implemented in S-Plus)
were used as smoothing terms. To model time trend, the
same degree of freedom was used as in the smoothing
splines in the GAMs described above, with the default
placement of knots. For weather models, to approximate
LOESS smoothing with a span of 0.5 in the GAM, natural
splines with 2 df were used.

Since the two-step approach used in the original anal-
ysis could have prevented the pollution indices from com-
peting fairly with weather and temporal trends, analyses
were repeated using the same GAMs (with stringent con-
vergence criteria) with all variables included simulta-
neously. Similarly, analyses were repeated using
comparable GLMs with natural splines.

While the weather and temporal trend model
specification used in the original analysis was developed
with considerations that were specific to this data set, a
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question remains as to how sensitive the results could
have been had we chosen different weather model
specifications or different degrees of freedom for time
trends. To address this issue, original weather specifi-
cation, two additional weather models, and no weather
model were each applied to a limited set of pollution
variables (1-day lagged PM;,) and health outcomes (total
mortality and hospital admissions for pneumonia) using
GLM with natural splines. For each of the four weather
specifications, five levels of degrees of freedom
(corresponding approximately to one year, six months,
three months, one month, and two weeks) were applied for
natural splines. The two additional weather specifications
were similar to those in published studies, except that
natural splines were used instead of LOESS or smoothing
splines. One model was similar to that used in the Harvard
Six-Cities time-series study (Schwartz et al 1996) in which
LOESS terms of same-day temperature and same-day
dewpoint with spans of 0.5 were included. To approximate
this model, natural splines were used with 2 df instead of
LOESS terms. Another weather model evaluated was
similar to that used in the analysis of 90 US cities by Samet
and associates (2000a,b), in which smoothing splines of the
same-day temperature (df = 6), the average of temperatures
lagged 1 through 3 days (df = 6), same-day dewpoint (df = 3),
and the average of dewpoints lagged 1 through 3 days (df =
3) were included. Instead of smoothing splines, natural
splines were used in this sensitivity analysis.
Combinations of four health outcomes (total mortality
from all causes [excluding injury and poisoning], circula-
tory diseases, respiratory disorders, and other mortality
[total mortality excluding injury, poisoning, circulatory, and
respiratory causes]), eight pollutants (TSP, PM,, TSP-PM,,
sulfate from TSP filters, O4, SO,, NO,, and CO), and ten
lag/average days (0, 1, 2, 3, averages of 0-1, 1-2, 2-3, 0-2, 1—
3, and 0-3) were examined for the 1985-1990 study period.
Likewise, ten outcomes (four mortality series described
above plus hospital admissions for pneumonia, chronic
obstructive pulmonary disease [COPD], ischemic heart dis-
ease, dysrhythmias, heart failure, and stroke in the elderly),
nine pollutants (PM;q, PM, 5, PM;y_, 5, SO,27, H*, O,,
NO,, SO,, and CO) and the ten lag/average days were exam-
ined for the 1992-1994 study period. Thus, 1220 (=4 X 8 X
10 + 10 X 9 X 10) RR estimates were calculated for each set
of analysis for single pollutant models. In the original
report, all of these 1220 RR estimates and their 95% confi-
dence intervals (CIs) were presented as appendices. In addi-
tion, in the original report, tables (PM indices only) of RRs
and 95% Cls for lags with the most significant estimates and
corresponding figures (both PM indices and gaseous pollut-
ants) were presented. In this reanalysis, tables for PM
indices (only single-pollutant models) and corresponding

figures with original results, revised results from analyses
with stringent convergence criteria, and GLM results are
presented. In addition, distributions of the resulting 1220
RRs are described to facilitate a more comprehensive evalu-
ation of these results.

RESULTS

Figure 1 shows a scatter plot of the 1220 RRs per 5th-to-
95th percentile increment of the pollution index distribu-
tion for GAM with default convergence criteria (ie, the orig-
inal study) versus GAM with stringent convergence criteria
for all the health outcomes, pollutants, and lag/averaging
days combinations. For a large fraction, the GAM with strin-
gent convergence criteria provided smaller RR estimates
than the GAM with default convergence criteria. The differ-
ence in RR estimates appears to be independent of the level
of RR estimates. The median difference in RR per 5th-to-
95th percentile increment was 0.0071. Figure 2 shows a
scatter plot of the GLM results versus GAM with stringent
convergence criteria for all the health outcomes, pollutants,
and lag/averaging days combinations. Overall, the points
generally scattered around a curve with a slope of 1. How-

RR per 5th-to-95th Distribution Pollutant Increment
Using GAM with Default Cov. Criteria

0.9 1.0 11 12

RR per 5th-to-95th Distribution Pollutant Increment
Using GAM with Stringent Cov. Criteria

Figure 1. Plot of the 1220 relative risks (RRs) obtained with the original
(default) and revised (stringent) GAMs for all health outcomes per 5th-to-
95th percentile increment in pollution index distribution for all pollut-
ants and all lags and averaging-day combinations.
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Using GAM with Stringent Conv. Criteria

RR per 5th-to-95th Distribution Pollutant Increment

09
I I I
09 1.0 1.1 12
RR per 5th-to-95th Distribution Pollutant
Increment Using GLM

Figure 2. Plot of the 1220 relative risks (RRs) obtained with the revised
(stringent) GAM and the GLM with natural splines for all health out-
comes per 5th-to-95th percentile increment in pollution index distribu-
tion for all pollutants and all lags and averaging-day combinations.

ever, the median difference in RR was 0.0028; the RR esti-
mates were smaller for the GLM results.

In the original report, the RRs for all the lag/averaging
periods were presented in the appendix, but the main text
focused on a presentation of tables and figures comparing
RRs across PM indices and gaseous pollutants at their most
significant lags. While such an approach may be useful to
address the original study hypothesis, a more comprehen-
sive summary requires an examination of the distribution
of the RRs by pollutant. Figure 3 shows box plots of all
1220 RRs by pollutant for (a) the original analysis and (b)
the revised analysis with stringent convergence criteria.
Obviously, the RRs in these distributions are not indepen-
dent events, because RRs for all the lag/averages and
health outcomes were included. These distributions also
included RRs for a mixture of health outcomes, including
those that were not associated with any PM indices (ie,
hospital admissions for stroke and dysrhythmias). With
these limitations in mind, Figure 3 provides an overall com-
parison of the distributions of RR estimates by pollutant.
The distributions of RRs were lower for the GAM with strin-
gent convergence criteria than for the GAM with default
convergence criteria across all pollutants. However, the rel-
ative extent of RR estimates across pollutants in the revised
analysis remains the same as that in the original study.
There appear to have been no differential reductions in RR
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estimates across the PM indices or gaseous pollutants. The
reductions in RR estimates for SO,, NO,, and CO were
such that their medians for all the lag/averages and out-
comes were essentially 1 (no effects).

Tables 1 through 12 show results for the original model
(GAM with default convergence criteria), GAM with strin-
gent convergence criteria, and GLM approximating the
original GAMs for PM indices at lags that were the most
significant in the original analyses. These tables also show
the corresponding table numbers in the original report. To
facilitate comparison, the same information (except for
hospital admissions for dysrhythmias and stroke) is pre-
sented in Figures 4 through 6. Again, it can be seen that, in
the majority of cases, reductions in RR estimates did not
differ across the PM indices. Also, the tables and figures
show that the widths of the 95% ClIs for these three models
were essentially the same as expected; while the
smoothing terms for the seasonal trend and weather
models were fitted in GAMs or GLMs in the first stage of
the regression, the coefficients for pollutants in the second
stage were always fitted using GLM, as described in the
Methods. Except for a few instances in which the original
results had lags with almost the same RR estimates, the
revised analysis did not change the lag structure of the
associations.

Figure 7 (corresponding to Figure 17 in the original
report) shows the results of GAMs, original and using
stringent convergence criteria, in which PM, 5 and
PM,(_, 5 were included simultaneously. As can be seen,
the pattern found in the original analysis was essentially
unchanged.

Figure 8 shows box plots of all 1220 RRs by pollutant for
GAMs (with stringent convergence criteria) in which
weather, smooth time trend, and pollution variables were
included simultaneously, as well as plots for the corre-
sponding GLMs. The relative magnitude of the RRs across
pollutants was similar to those in the original analysis or
reanalysis. The levels of RRs in these results were larger
than those in the original analysis or reanalysis (compare
with Figure 3), however. For example, the median PM;
RRs in Figure 3(b) is 1.017, whereas it is 1.026 in Figure
8(a). As expected, the standard errors of coefficients in
Figure 8(b), showing GLM results, were larger (median
16%) than those in Figure 8(a).

The sensitivity of PM; coefficients (at lag 1 day) to the
weather model specification and the degree of freedom for
temporal trends in the 1992—-1994 study period is shown in
Figure 9 (for total mortality) and Figure 10 (for pneumonia
admissions among the elderly). For total mortality with
degree of freedom corresponding to less than three months,
the coefficients for the three weather models were relatively
stable but ranged from 0.00051 to 0.00081. For pneumonia
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Figure 3. Box plots of all 1220 relative risks (RRs) by pollutant for (a) GAM with default convergence criteria and (b) revised GAM

with stringent convergence criteria.

admissions, the coefficients were more sensitive to the
degree of freedom. For degree of freedom corresponding to
less than three months, the coefficients for the three weather
models ranged between 0.00075 to 0.00293. The coefficients
for the model without weather adjustment were up to two to
three times larger than those with weather adjustment for
both mortality and pneumonia admissions, but ranged from
0.00051 to 0.00081. For pneumonia admissions, the

coefficients were more sensitive to the degree of freedom.
For degree of freedom corresponding to less than three
months, the coefficients for the three weather models ranged
between 0.00075 to 0.00293. The coefficients for the model
without weather adjustment were up to two to three times
larger than those with weather adjustment for both mortality
and pneumonia admissions.
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Table 1. Relative Risks (95% CI below) for Total Mortality
for PM Indices per 5th-to-95th Percentile Increment,
1985-1990?

Table 3. Relative Risks (95% CI below) for Mortality from
Respiratory Causes for PM Indices per 5th-to-95th
Percentile Increment, 1985—-19902

Original GAM GAM Original GAM GAM
(default) (stringent) GLM (default) (stringent) GLM
PM; (lag 1) 1.026 1.014 1.010 PM,, (lag 1) 1.123 1.114 1.077
(1.003,1.049) (0.992,1.037) (0.988,1.033) (1.036,1.218) (1.027,1.208) (0.994,1.168)
TSP (lag 3) 1.018 1.009 1.003 TSP (lag 1) 1.109 1.102 1.071
(0.996,1.040) (0.987,1.031) (0.982,1.025) (1.028,1.197) (1.021,1.190) (0.993,1.156)
TSP-PM; 1.001 1.000 0.998 TSP-PM;, 1.043 1.043 1.035
(lag 1) (0.978,1.025) (0.977,1.024) (0.975,1.022)  (lag 1) (0.960,1.133) (0.959,1.134) (0.952,1.125)
TSP sulfates 1.015 1.008 1.005 TSP sulfates 1.050 1.044 1.031
(lag 3) (0.995,1.035) (0.988,1.028) (0.986,1.026 (lag 1) (0.976,1.129) (0.971,1.123) (0.959,1.109)

 Corresponds to Table 5 in Lippmann and colleagues 2000, p 18.

@ Corresponds to Table 7 in Lippmann and colleagues 2000, p 18.

Table 2. Relative Risks (95% CI below) for Mortality from
Circulatory Causes for PM Indices per 5th-to-95th

Table 4. Relative Risks (95% CI below) for Total Mortality
for PM Indices per 5th-to-95th Percentile Increment,

Percentile Increment, 1985-1990? 1992-19942
Original GAM GAM Original GAM GAM
(default) (stringent) GLM (default) (stringent) GLM
PMlO (lag 3) 1.023 1.010 1.005 PM2.5 (lag 3) 1.045 1.027 1.029
(0.991,1.057) (0.978,1.043) (0.974,1.038) (0.991,1.102) (0.974,1.083) (0.976,1.085)
TSP (lag 3) 1.014 1.004 0.999 PM;g_» 5 1.038 1.031 1.027
(0.984,1.045) (0.974,1.034) (0.969,1.029) (lag 1) (0.988,1.090) (0.982,1.082) (0.979,1.078)
TSP-PMlO 1.009 1.008 1.006 PMlO (lag 1) 1.045 1.034 1.032
(lag 1) (0.977,1.043) (0.976,1.041) (0.974,1.039) (0.989,1.102) (0.980,1.091) (0.978,1.089)
TSP sulfates 1.019 1.009 1.008 H* (lag 1) 1.010 1.007 1.006
(lag 2) (0.991,1.048) (0.982,1.038) (0.980,1.036) (0.985,1.036) (0.982,1.034) (0.981,1.032)
SO4= (lag 1) 1.024 1.015 1.012

@ Corresponds to Table 6 in Lippmann and colleagues 2000, p 18.
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(0.981,1.069)

(0.972,1.059)

(0.970,1.056)

@ Corresponds to Table 13 in Lippmann and colleagues 2000, p 26.
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Table 5. Relative Risks (95% CI below) for Mortality from
Circulatory Causes for PM Indices per 5th-to-95th
Percentile Increment, 1992—19942

Table 7. Relative Risks (95% CI below) for Hospital
Admissions for Pneumonia Among the Elderly for PM
Indices per 5th-to-95th Percentile Increment, 1992-19942

Original GAM GAM Original GAM GAM

(default) (stringent) GLM (default) (stringent) GLM

PM2.5 (lag 1) 1.046 1.032 1.029 PM2‘5 (lag 1) 1.185 1.154 1.149
(0.967,1.131) (0.954,1.116) (0.952,1.113) (1.053,1.332) (1.027,1.298) (1.022,1.292)

PM1g_25 1.075 1.064 1.058 PMyg_25 1.114 1.095 1.107
(lag 1) (1.000,1.155) (0.990,1.143) (0.985,1.137) (lag 1) (1.006,1.233) (0.990,1.211) (1.00,1.226)

PMlO (lag 1) 1.070 1.055 1.050 PM10 (lag 1) 1.219 1.185 1.190
(0.987,1.160) (0.973,1.142) (0.969,1.137) (1.084,1.372) (1.054,1.332) (1.057,1.338)

H* (lag 0) 1.015 1.014 1.012 H* (lag 3) 1.060 1.049 1.049
(0.978,1.054) (0.976,1.053) (0.975,1.051) (1.005,1.118) (0.994,1.107) (0.994,1.107)

SO4= (lag 0) 1.018 1.013 1.009 SO4= (lag 1) 1.156 1.128 1.123

(0.955,1.085)

(0.950,1.080)

(0.946,1.075)

(1.050,1.273)

(1.025,1.242)

(1.020,1.235)

@ Corresponds to Table 13 in Lippmann and colleagues 2000, p 26.

@ Corresponds to Table 14 in Lippmann and colleagues 2000, p 26.

Table 6. Relative Risks (95% CI below) for Mortality from
Respiratory Causes for PM Indices per 5th-to-95th
Percentile Increment, 1992—19942

Original GAM GAM

(default) (stringent) GLM

PM, 5 (lag 0) 1.033 1.033 1.045
(0.855,1.248) (0.854,1.249) (0.864,1.265)

PMjg_s 5 1.071 1.067 1.061
(lag 2) (0.913,1.257) (0.909,1.253) (0.904,1.245)

PMlO (lag 0) 1.080 1.077 1.081
(0.896,1.301) (0.893,1.298) (0.896,1.303)

H* (lag 1) 1.028 1.026 1.025
(0.938,1.128) (0.936,1.126) (0.934,1.124)

SO4= (lag 3) 1.066 1.056 1.047

(0.908,1.251)

(0.899,1.240)

(0.892,1.230)

 Corresponds to Table 13 in Lippmann and colleagues 2000, p 26.

Table 8. Relative Risks (95% CI below) for Hospital
Admissions for Chronic Obstructive Pulmonary Disease
Among the Elderly for PM Indices per 5th-to-95th
Percentile Increment, 1992—19942

Original GAM GAM

(default) (stringent) GLM

PM, 5 (lag 3) 1.080 1.043 1.004
(0.933,1.251) (0.902,1.207) (0.869,1.161)

PMg_3 5 1.089 1.083 1.103
(lag 3) (0.960,1.236) (0.954,1.229) (0.970,1.253)

PM10 (lag 3) 1.098 1.066 1.047
(0.946 1.274) (0.920,1.235) (0.904,1.213)

H* (lag 3) 1.067 1.055 1.039
(1.000,1.138) (0.988,1.126) (0.972,1.111)

SO4= (lag 3) 1.060 1.032 0.990

(0.938,1.198)

(0.914,1.166)

(0.878,1.117)

& Corresponds to Table 14 in Lippmann and colleagues 2000, p 26.
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Table 9. Relative Risks (95% CI below) for Hospital
Admissions for Ischemic Heart Disease Among the Elderly
for PM indices per 5th-to-95th Percentile Increment,

1992-19942
Original GAM GAM
(default) (stringent) GLM
PM, s (lag 2) 1.063 1.053 1.043
(0.980,1.153) (0.971,1.143) (0.961,1.131)
PM;g_» 5 1.101 1.098 1.078
(lag 2) (1.026,1.181) (1.023,1.178) (1.004,1.157)
PMlO (lag 2) 1.091 1.082 1.063
(1.005,1.184) (0.997,1.175) (0.980,1.154)
H* (lag 2) 1.027 1.025 1.023
(0.991,1.065) (0.989,1.063) (0.987,1.061)
SO4= (lag 2) 1.026 1.018 1.014

(0.961,1.095)

(0.954,1.087)

(0.949,1.082)

@ Corresponds to Table 14 in Lippmann and colleagues 2000, p 27.

Table 11. Relative Risks (95% CI below) for Hosptial
Admissions for Heart Failure Among the Elderly for PM
Indices per 5th-to-95th Percentile Increment, 1992—1994?

Original GAM GAM

(default) (stringent) GLM

PM, 5 (lag 1) 1.133 1.117 1.100
(1.034,1.241) (1.020,1.224) (1.004,1.205)

PM;g_s 5 1.050 1.042 1.047
(lag 0) (0.968,1.138) (0.962,1.130) (0.966,1.135)

PMlO (lag 0) 1.099 1.094 1.086
(1.002,1.206) (0.997,1.200) (0.990,1.191)

H* (lag 0) 1.039 1.036 1.030
(0.992,1.088) (0.989,1.085) (0.983,1.079)

SO4= (lag 0) 1.091 1.084 1.073

(1.012,1.176)

(1.006,1.168)

(0.996,1.156)

& Corresponds to Table 14 in Lippmann and colleagues 2000, p 27.

Table 10. Relative Risks (95% CI below) for Hospital
Admissions for Dysrhythmias Among the Elderly for PM
Indices 5th-to-95th Percentile Increment, 1992—19942

Table 12. Relative Risks (95% CI below) for Hospital
Admissions for Stroke Among the Elderly for PM Indices
per 5th-to-95th Percentile Increment, 1992-1994?

Original GAM GAM Original GAM GAM

(default) (stringent) GLM (default) (stringent) GLM

PM, 5 (lag 1) 1.047 1.046 1.038 PM, 5 (lag 0) 1.026 1.028 1.014
(0.907,1.208) (0.906,1.207) (0.900,1.198) (0.925,1.139) (0.926,1.140) (0.914,1.125)

PM;g_25 1.002 1.001 1.000 PMg_s 5 1.047 1.048 1.054
(lag 0) (0.882,1.138) (0.881,1.138) (0.880,1.137) (lag 1) (0.955,1.148) (0.956,1.149) (0.961,1.155)

PM, (lag 1) 1.030 1.029 1.020 PM; (lag 1) 1.049 1.051 1.045
(0.891,1.192) (0.889,1.191) (0.881,1.181) (0.944,1.165) (0.946,1.167) (0.941,1.161)

H* (lag 0) 1.043 1.043 1.036 Ht (lag 1) 1.024 1.025 1.024
(0.974,1.117) (0.974,1.117) (0.968,1.110) (0.977,1.074) (0.978,1.075) (0.976,1.074)

SO4: (lag 1) 1.032 1.031 1.024 SO4= (lag 1) 1.015 1.018 1.013

(0.921,1.157)

(0.920,1.155)

(0.913,1.148)

(0.934,1.104)

(0.936,1.107)

(0.932,1.101)

2 Corresponds to Table 14 in Lippmann and colleagues 2000, p 27.
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@ Corresponds to Table 14 in Lippmann and colleagues 2000, p 27.
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Figure 4. Relative risks for total mortality, mortality from circulatory causes, and mortality from respiratory causes per 5th-to-95th percentile incre-
ment in PM indices for 1985-1990 from GAM with default convergence criteria, GAM with stringent convergence criteria, and GLM with natural
splines.
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Figure 5. Relative risks for total mortality, mortality from circulatory causes, and mortality from respiratory causes per 5th-to-95th percentile
increment in PM indices for 1992-1994 from GAM with default convergence criteria, GAM with stringent convergence criteria, and GLM with
natural splines.
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Figure 6. Hospital admissions among the elderly. Relative risks per 5th-to-95th percentile increment in PM indices for 1992-1994 from GAM with
default convergence criteria, GAM with stringent convergence criteria, and GLM with natural splines. COPD = chronic obstructive pulmonary dis-
ease.

competing with other covariates, the approach used in the
DISCUSSION original analysis may give conservative pollution effect

with more stringent convergence criteria generally, but not
always, resulted in reduced RR estimates. The extent of
reduction appeared to be independent of the magnitude of

percentile increment of pollution index distribution was
0.0071. GLM analyses with natural splines that approxi-

mate the GAMs resulted in further but smaller reductions in

stringent convergence criteria. The median difference in

inclusion of all covariates resulted in generally larger but
more variable RR estimates. Since the original two-step

estimates. Additional sensitivity analyses using alterna-
tive weather model specifications that are similar to those
used in the literature and with varying degrees of freedom
for temporal trends resulted in PM, coefficients over

Reanalysis of the Detroit data using the original GAM

RR estimates. The median difference in RRs per 5th-to-95th ranges that varied by a factor of two to three. These differ-
ences could be much larger than those observed in the

revised analysis. Since we do not know exactly which
weather model is correct or what extent of smoothing is

RR estimates compared with those from the GAM with appropriate, future analyses of this type of data may need
to consider several sensitivity analyses using alternative

RRs per 5th-to-95th percentile increment between the GAM weather models and varying extent of temporal smoothing.
with stringent convergence criteria and the GLM was Weather model specification and the extent of temporal
0.0028. These reductions in RR estimates did not differ =~ smoothing are not the only factors that can change pollu-
across PM components. Therefore, the conclusions of the tion RR estimates. Others may include the location of mon-
original study regarding the lack of relative role of PM by itors, choice of lags, and considerations of distributed lags.
size and chemical characteristics remain the same. These factors can cause differences that vary by up to a

factor of two in estimated pollution coefficients. More
comprehensive evaluations of relative impacts of these
factors on pollution risk estimates are needed in the future.

Additional analyses using more common, simultaneous

approach may have prevented the pollution variables from

152



K Ito
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Figure 7. Mortality and elderly hospital admissions. Relative risks (RRs) per 5th-to-95th percentile increment in PM, 5 and PM;4_, 5, included in the
model simultaneously for 1992-1994, from GAM with default or stringent convergence criteria. COPD = chronic obstructive pulmonary disease.
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(a) GAM (Stringent Convergence Criteria); Pollution
and Individual Covariates Together
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Figure 8. Box plots of all 1220 relative risks (RRs) for all health outcomes by pollutant for (a) GAM (stringent convergence criteria)
with pollution and individual covariates together and (b) GLM with pollution and individual covariates together.
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Figure 9. PM,, (lag 1 day) coefficient (8) for total mortality, for 1992-1994, as a function of alternative weather models and varying degrees of
freedom for fitting temporal trends using natural splines. White circle: natural splines of same-day temperature and same-day dewpoint, both
with df = 2; black circle: natural splines of same-day temperature (df = 2), the average of temperatures lagged 1 through 3 days (df = 2), and hot-and-
humid day indicator; white triangle: natural splines of the same-day temperature (df = 6), the average of temperatures lagged 1 through 3 days
(df = 6), same-day dewpoint (df = 3), and the average of dewpoints lagged 1 through 3 days (df = 3); x: no adjustment for weather.
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Figure 10. PM,, (lag 1 day) coefficient () for hospital admissions for pneumonia among the elderly, for 1992-1994, as a function of alternative
weather models and varying degrees of freedom for fitting temporal trends using natural splines. White circle: natural splines of same-day tem-
perature and same-day dewpoint, both with df = 2; black circle: natural splines of same-day temperature (df = 2), the average of temperatures
lagged 1 through 3 days (df = 2); white triangle: natural splines of the same-day temperature (df = 6), the average of temperatures lagged 1 through 3
days (df = 6), same-day dewpoint (df = 3), and the average of dewpoints lagged 1 through 3 days (df = 3); x: no adjustment for weather.

155



Short Communication Report

REFERENCES*

ABBREVIATIONS AND OTHER TERMS

Dominici F, McDermott A, Zeger SL, Samet JM. 2002. On
generalized additive models in time series studies of air
pollution and health. Am J Epidemiol 156:1-11.

Lippmann M, Ito K, Nadas A, Burnett RT. 2000. Associa-
tion of Particulate Matter Components with Daily Mor-
tality and Morbidity in Urban Populations. Research
Report 95. Health Effects Institute, Cambridge MA.

Samet JM, Dominici F, Zeger SL, Schwartz J, Dockery DW.
2000a. The National Morbidity, Mortality and Air Pollution
Study, Part I: Methods and Methodologic Issues. Research
Report 94. Health Effects Institute, Cambridge MA.

Samet JM, Zeger SL, Dominici F, Curriero F, Coursac I,
Dockery DW, Schwartz J, Zanobetti A. 2000b. The National
Morbidity, Mortality and Air Pollution Study, Part II: Mor-
tality and Morbidity from Air Pollution in the United
States. Research Report 94. Health Effects Institute, Cam-
bridge MA.

Schwartz J, Dockery DW, Neas LM. 1996. Is daily mortality
associated specifically with fine particles? J Air Waste
Manage Assoc 46:927-939.

* Bold type identifies publication containing the original analyses revised in
this short communication report.

156

AIC
CI

CcO
COPD

df
GAM
GLM
LOESS
NO,

PM

PM;,
PMig—25
PM; 5
RR

S0,
S0,%"
TSP

Akaike information criterion
confidence interval
carbon monoxide

chronic obstructive
pulmonary disease

degree of freedom

generalized additive model
generalized linear model
locally weighted smoother
nitrogen dioxide

ozone

particulate matter

PM less than 10 pm in diameter
PM;g minus PM, 5

PM less than 2.5 pm in diameter
relative risk

sulfur dioxide

sulfate

total suspended particles
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ABSTRACT

Under the APHEA2 (Air Pollution and Health: A Euro-
pean Approach *2) project we have reported results on the
short-term effects of ambient particles on total nonacci-
dental mortality, using data from 29 European cities. The
original method of analysis applied generalized additive
models (GAM) with locally weighted smoothers (LOESS)
for seasonality and meteorologic variables to individual
city data and applied second-stage regression models to
combine city-specific effect estimates and explore hetero-
geneity. After problems were recently identified for GAM
for some types of analyses, we reanalyzed the original data
using GAM with more stringent convergence criteria or
using one of two parametric approaches: natural spline
(ns) and penalized spline (ps).

We found that the original pooled effect estimate (b =
0.000617, SE = 0.000106) was reduced by 4% when more
stringent GAM convergence criteria were applied (b =
0.000593, SE = 0.000103), by 33.6% when ns were
applied (b = 0.000410, SE = 0.000091), and by 10.7%
when ps were applied (b = 0.000550, SE = 0.000097);
while the standard error estimates were practically
unchanged. The effect modification patterns originally
reported (higher PM; [particulate matter less than 10 pm
in diameter] effects in cities with higher nitrogen dioxide
[NO,] concentration, in warmer cities, in populations
with higher age-standardized mortality rates, and in
Southern and Northwestern cities compared to Central-

* A list of abbreviations and other terms appears at the end of the section.

This short communication report is part of an HEI Special Report, which
also includes 20 other reports, a section on NMMAPS II, two HEI Commen-
taries, and an HEI Statement. Please address correspondence about this sec-
tion to Dr Klea Katsouyanni, Department of Hygiene and Epidemiology,
Medical School, 75 Mikras Asias St (Goudi), 115 27 Athens, Greece.

Health Effects Institute © 2003

eastern ones) were preserved when parametric methods
for adjusting confounders were applied.

INTRODUCTION

Within the framework of the APHEA2 project we have
reported results on the short-term effects of ambient parti-
cles on the total number of natural deaths, using data from
29 European cities (Katsouyanni et al 2001). For the anal-
ysis, a hierarchical modeling approach was adopted and
implemented in two stages: individual city data were mod-
eled and then these results were combined to estimate an
overall effect or to explain heterogeneity and identify appro-
priate effect modifiers. Data for each city were analyzed sep-
arately, using generalized additive Poisson regression
models with LOESS for seasonal patterns, temperature and
humidity (Katsouyanni et al 2001).

Recently Dominici and colleagues (2002) identified a
problem with the routine application of GAMs using S-Plus
software with the default convergence criteria. In the
National Morbidity, Mortality, and Air Pollution Study
(NMMAPS), applying more stringent convergence criteria
in S-Plus resulted in reducing by approximately 50% the
mortality increase associated with an increase in PM; of
10 ug/m?. The same reduction was obtained when Poisson
regression with parametric nonlinear adjustments (ns) for
confounding factors was applied. Independently, Ramsay
and colleagues (2003) found that the S-Plus GAM function
underestimates the corresponding variances of the model
parameters under certain conditions. This latter problem,
however, does not seem to affect multicity studies or, more
specifically, the pooled estimate (Daniels et al 2002).

In response to the above findings, we reanalyzed our data
using the more stringent convergence criteria in S-Plus
(Katsouyanni et al 2001). Responding to the request of EPA
(US Environmental Protection Agency), we present that
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reanalysis as well as a reanalysis of the data using Poisson
regression with ns to adjust seasonal patterns and
meteorologic variables. We also repeated the analysis using
ps, an approach that is more flexible than ns but that at the
same time maintains the advantages of a parametric method.

DATA AND METHODS

We used data from 29 European cities or areas: Athens
(Greece); Barcelona, Bilbao, Madrid, and Valencia (Spain);
Basel, Geneva, and Zurich (Switzerland); Birmingham and
London (United Kingdom); Budapest (Hungary); Cracow,
Lodz, Poznan, and Wroclaw (Poland); Dublin (Ireland);
Erfurt (Germany); Helsinki (Finland); Ljubljana (Slovenia);
Lyon, Marseille, and Paris (France); Milan, Rome, and
Torino (Italy); Prague and Teplice (Czech Republic); Stock-
holm (Sweden); and Tel Aviv (Israel). Daily information
was available for more than 5 years in each city for ambient
particle concentrations (PM; for 21 cities, black smoke for
14 cities) and levels of other pollutants and confounders.
The outcome variable was the total nonaccidental daily
number of deaths. Data were also collected for city (or area)
characteristics describing geographic location, environ-
mental and climatologic conditions, and the health status of
the population. The role of these variables as potential effect
modifiers was explored. More details on the data are pro-
vided in Katsouyanni and colleagues (2001).

Our original analysis approach included two modeling
stages. First, the data for each city was analyzed sepa-
rately, to allow for local differences, according to a pre-
defined standardized method that resulted in a city-
specific model. Briefly, GAM Poisson regression, using
LOESS to control for seasonal patterns and meteorologic
parameters, was applied. The S-Plus default convergence
criteria were used. More details on the confounders and
exposure variables included in the models can be found in
Katsouyanni and colleagues (2001).

In the second stage of analysis, city-specific effect esti-
mates were regressed on city-specific covariates to obtain
an overall estimate and to explore heterogeneity across
cities. We applied univariate (for single-pollutant city-spe-
cific models) and multivariate (for multipollutant city-spe-
cific models) regression models to investigate the role of
potential effect modifiers. We estimated fixed-effects
pooled regression coefficients and, in the presence of
remaining significant heterogeneity, we also applied
random-effects regression models to estimate the between-
cities variance using the maximum likelihood method
described by Berkey and colleagues (1995).
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For the present reanalysis, we applied the first-stage
models used in our original analyses but made the conver-
gence criteria more stringent. More specifically, we set the
maximum number of iterations to 1000 and the difference of
two successive coefficients to 10~ 1%, We also applied two
additional methods: using ns and ps parametric functions
to adjust for seasonal patterns and meteorologic variables.
As requested by the EPA, we used ns with the same
number of degrees of freedom as those used in the original
model (Table A.1). In the second method, proposed in this
paper, we used ps with the same number of degrees of
freedom as those in the original model. The latter
approach is fully parametric but more flexible than ns or
B-splines. The method is described in detail in Eilers and
Marx (1996) and Marx and Eilers (1998).

RESULTS

Table 1 shows the individual-city and pooled B coeffi-
cients and standard errors for daily mortality associated
with a 10-ug/m?® increase in PM;, concentration, as esti-
mated using the S-Plus GAM function with default conver-
gence criteria (as in the original analysis) and more strict
convergence criteria, ns, and ps. As reported before (Kat-
souyanni et al 2002), the differences between using the
more stringent and the default convergence criteria were
small: the pooled estimates were reduced by approxi-
mately 4% (Table 2); the change of individual city esti-
mates ranged from —35.4% to +4.5%. The differences
between ns and the original model were substantially
larger. The fixed-effects pooled estimate was reduced by
38.5% and the random-effects pooled estimate by 33.6%.
The changes in individual-city estimates ranged more
widely, from —354.1% to +176.5% (Table 2). When ps
were used to control for confounding effects, the estimated
PM,, effects were closer to the original estimates. The
pooled fixed-effects estimate and random-effects estimates
were reduced by 16.0% and 10.7%, respectively. Simi-
larly, the changes of individual-city effect estimates
ranged from —185.8% to +36.6% (Table 2).

The standard errors of the coefficients from city-specific
models generally increased when ns and ps were applied
instead of the GAM method. However, the standard errors
of the pooled estimates calculated with the random-effects
model when ns and ps are applied were slightly lower
than the corresponding standard errors from the GAMs.

Black smoke data were analyzed only with GAM with
stricter convergence criteria or with ns parametric
adjustments; ps was not applied. The results were similar
to those for PM; (Tables 3 and 4).
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Table 1. PM, (ng/m?®) Effects on Daily Total Number of Deaths: Results from GAM Using S-Plus Software Default
Convergence Parameters (default), More Stringent Convergence Parameters (maximum number of iterations = 1000 and
difference of two successive coefficients < 10~ 14) (strict), Natural Splines? and Penalized Splines? for the APHEA2 Cities.
All Models Adjusted for Seasonality, Long-Term Trends, Temperature, Humidity, 